Jean Pierre Giroud

mécanique des sols

tables pour le calcul des fondations

tome 2

Dunod

MÉCANIQUE DES SOLS TABLES POUR LE CALCUL DES FONDATIONS

TOME 2

MÉCANIQUE DES SOLS

TABLES POUR LE CALCUL Des FONDATIONS

PAR Jean-Pierre GIROUD

> TOME 2 Tassement

DUNOD PARIS Jean-Pierre GIROUD est né en 1938. Il est ingénieur de l'Ecole Centrale des Arts et Manufactures de Paris, Licencié ès Sciences, Docteur de Spécialité et doit soutenir prochainement une thèse de Doctorat ès Sciences. Il enseigne la Mécanique des Sols à Grenoble comme professeur à l'Institut Universitaire de Technologie et il est chargé, à l'Université, du cours de préparation au doctorat qui, jusqu'à ces dernières années, était le seul cours en France à ce niveau en Mécanique des Sols. Monsieur GIROUD a effectué seul, ou en collaboration, des recherches sur la physico-chimie des argiles, la locomotion tous terrains, les sols gelés, la terre armée, les granulats routiers, les remblais, et, plus particulièrement sur les fondations. Ces travaux ont fait l'objet d'une soixantaine de publications, de conférences et de communications à des congrès, en France et à l'étranger. Par ailleurs, en tant qu'ingénieur ou expert près les tribunaux, il a été consulté pour une cinquantaine de projets, notamment de fondations et de barrages en terre, domaine où il est l'auteur de certaines innovations techniques. Membre de plusieurs sociétés savantes françaises et étrangères, Jean-Pierre GIROUD a reçu, en 1972, le "Prix des Jeunes" que la Société des Ingénieurs Civils de France décerne chaque année à un ingénieur de moins de 35 ans pour l'ensemble de ses travaux.

© Dunod, 1973

"Toute représentation ou reproduction, intégrale ou partielle, faite sans le consentement de l'auteur, ou de ses ayants-droit, ou ayants-cause, est illicite (loi du l1 mars 1957, alinéa 1" de l'article 40). Cette représentation ou reproduction, par quelque procédé que ce soit, constituerait une contrefaçon sanctionnée par les articles 425 et suivants du Cade pénal. La loi du l1 mars 1957 n'autorise, aux termes des alinéas 2 et 3 de l'article 41, que les copies ou reproductions strictement réservées à l'usage privé du copiste et non destinées à une utilisation collective d'une part, et, d'autre part, que les analyses et les courtes citations dans un but d'exemple et d'illustration".

à mes parents, à ma femme, à mes enfants et à ceux qui n'aiment que les dédicaces très classiques.

Note ajoutée à l'édition numérique :

La raison de cette dédicace très classique est la suivante.

La dédicace sous forme de poème du Volume 1 m'avait valu des critiques de la part de deux professeurs conservateurs de l'Université de Grenoble et, naturellement, le soutien des autres professeurs et collègues.

La dédicace ci-dessus du Volume 2 fut une réponse ironique à ceux qui m'avaient critiqué et un clin d'œil à ceux qui m'avaient soutenu.

JPG

AVANT - PROPOS

Les "Tables pour le calcul des fondations" comprennent 8 chapitres. Le premier est consacré à des généralités, les cinq suivants (chap. 2 à 6) constituent la première partie de l'ouvrage relative aux calculs de tassement et les deux derniers (chap. 7 et 8), la deuxième partie relative aux calculs de force portante.

Le volume I, terminé en octobre 1971, aura paru en décembre 1972.

Le volume II, que nous présentons ici, comprend les chapitres 4, 5 ét 6 qui sont la fin de la première partie. Ainsi, les volumes I et II constituent la somme de tous les résultats théoriques actuellement disponibles, à notre connaissance, pour le calcul des tassements.

Le volume III, bientôt terminé, regroupera les résultats relatifs au calcul de la force portante des fondations.

J. P. G. mars 1972.

SOMMAIRE

	- Préface	
	- Introduction	
TOME 1	- Chapitre 1 : Généralités	
	- Chapitre 2 : Charges concentrées	
	- Chapitre 3 : Fondations circulaires	
		<u> 1re Partie</u> :
	- Chapitre 4 : Fondations rectangulaires	Tassement
TOME 2 <	- Chapitre 5 : Fondations de forme quelconque	
	- Chapitre 6 : Fondations de grande longueur	
	,	
TOME 3	- Chapitre 7 : Charge normale centrée	<u>2e Partie</u> :
(,	$ig $ - Chapitre 8 : Charge inclinée et excentrée \int	Force Portante

TABLE DES MATIÈRES

Liste des :	notations	XV
Chapitre 4	FONDATIONS RECTANGULAIRES	1
4.1	Fondation rectangulaire exerçant une charge linéairement	
	répartie sur un sol homogène d'épaisseur infinie	3
4.2	Fondation rectangulaire exerçant une charge normale linéai-	
	rement répartie sur un sol homogène d'épaisseur infinie	71
4.3	Fondation rectangulaire exerçant une charge normale unifor-	
	mément répartie sur une couche de sol homogène d'épaisseur	
	finie	127
24 . 24	Fondation rectangulaire exerçant une charge inclinée unifor-	
	mément répartie sur une couche de sol homogène d'épaisseur	
	finie	185
4.5	Fondation rectangulaire rigide exerçant une charge verticale	
	sur un sol homogène d'épaisseur infinie	201
4.6	<u>Remblai</u> à base rectangulaire sur un sol homogène d'épaisseur	
	infinie	211
Chapitre 5	FONDATIONS DE FORME QUELCONQUE	239
5.1	Fondation de forme quelconque sur un sol homogène d'épaisseur	
	<u>infinie</u>	241
5.2	Fondation de forme quelconque sur une couche de sol d'épais-	
	seur finie	255

Table des matières

-

Chapitre 6.	- FONDATIONS DE GRANDE LONGUEUR	273
6.1	Charge concentrée sur une ligne de grande longueur exercée	
	sur une couche de sol d'épaisseur infinie	279
6.2	Charge normale concentrée sur une ligne de grande longueur	
	exercée sur une couche de sol homogène d'épaisseur finie	287
6.3	Charge normale concentrée sur une ligne de grande longueur	
	exercée sur un sol composé de <u>deux couches</u>	291
6.4	Fondation de grande longueur exerçant une charge linéaire-	
	<u>ment répartie</u> sur un sol homogène d'épaisseur infinie	297
6.5	Fondation de grande longueur exerçant une charge normale	
	uniforme sur une couche de sol homogène d'épaisseur finie	329
6.6	Fondation de grande longueur exerçant une charge normale	
	uniforme sur un sol composé de deux couches	355
6.7	Fondation de grande longueur exerçant une charge normale	
	uniforme sur un sol d'épaisseur infinie dont le module augmente	
	avec la profondeur	359
6.8	Fondation rigide de grande longueur exerçant une charge inclinée	
	et excentrée sur un sol homogène d'épaisseur infinie	365
6.9	Fondation rigide de grande longueur exerçant une charge normale	
	excentrée sur une couche de sol homogène d'épaisseur finie	395
6.10	Remblai de grande longueur et de section triangulaire ou tra-	
	pézoïdale sur un sol homogène d'épaisseur infinie	401
6.11	Remblai de grande longueur et de section symétrique triangu-	
	laire ou trapézoïdale sur une couche de sol homogène d'épais-	
	seur finie	433
6.12	Charge de grande longueur <u>distribuée de façon quelconque</u> sur	
	un sol homogène d'épaisseur infinie	473
6 .1 3	Charge de grande longueur distribuée de façon quelconque sur	
	une couche de sol homogène d'épaisseur finie	487
INDEX		499

Х

LISTE DES NOTATIONS

Nous ne donnons ici que les notations générales utilisées dans plusieurs chapitres

- a : demi-largeur de fondations de longueur infinie, demi-côté parallèle à Ox de fondations rectangulaires.
- B : largeur des fondations rectangulaires ou des fondations de longueur infinie.
- b : longueur de semelle filante, demi-côté parallèle à Oy de fondation rectangulaire.
- c : cohésion du sol (pour les calculs de force portante), largeur de la pente d'un remblai (pour les calculs de tassement).
- D : profondeur de la base des fondations.
- d : distance.
- E : module d'Young du sol.
- E, E : distance entre le centre de la fondation et le point d'application de la charge suivant Ox et Oy.
- e, e : excentricité de la charge suivant Ox et Oy.

e : excentricité optimale,

- F : force appliquée sur le sol.
- f : force par unité de longueur.
- f, f: composantes normale et tangentielle de f.
- f : force portante par unité de longueur.
 - g : accélération de la pesanteur.
 - H : épaisseur d'une couche de sol reposant sur un substratum (rarement : cohésion normale, H = c cotg \emptyset).
 - h : hauteur du remblai.

Liste des notations

L : longueur des fondations rectangulaires.

M: moment.

 $\mathcal{M}_{\mathrm{x}},\,\mathcal{M}_{\mathrm{y}}$: moments respectivement autour de Ox et de Oy.

N : composante normale de F.

- p : contrainte normale uniforme.
- q : contrainte normale suivant une distribution linéaire antisymétrique.
- R : rayon des fondations circulaires.
- r : distance radiale.
- r, θ, z : coordonnées cylindriques d'un point.
- r , r ; coefficients de réduction sur la force portante dûs à l'excentricité de la charge.
 - s : contrainte tangentielle uniforme.
 - T : composante tangentielle de F.
 - t : contrainte tangentielle suivant une distribution linéaire symétrique.
 - u, v : composantes horizontales du déplacement (coordonnées cartésiennes).
- u_r, u_A : composantes horizontales du déplacement (coordonnées cylindriques).

u, u, u, : composantes du déplacement (coordonnées sphériques).

w : tassement (composante verticale du déplacement).

w_m : tassement moyen.

x, y, z : coordonnées cartésiennes d'un point.

- a : rapport des côtés d'un rectangle.
- β : pente du terrain (quelquefois : épaisseur adimensionnelle de la couche)
- γ : poids volumique du sol.
- γ' : poids volumique immergé.
- γ_d : poids volumique sec.
- γ_{sat} : poids volumique saturé.

 γ_{xy} , γ_{yz} , γ_{zx} : composantes tangentielles du tenseur déformation (distorsions). δ : inclinaison de la charge.

- δ' : inclinaison des contraintes au contact de la fondation et du sol.
- δ° : inclinaison fictive.
- ε : variation de volume du sol (sert quelquefois à désigner + 1).
- ε , ε , ε , ε : composantes normales du tenseur déformation (dilatations).
 - ζ: désigne z/a ou z/2a.

 θ : angle entre Ox et Or.

- v : coefficient de Poisson du sol.
- π: 3,1416.
- p : distance entre l'origine 0 et le point considéré (quelquefois : masse volumique du sol).
- $\sigma_x, \sigma_y, \sigma_z$: composantes normales du tenseur contrainte.
 - σ_{m} : contrainte moyenne.
- τ , τ , τ : composantes tangentielles du tenseur contrainte.
 - Ø : angle de frottement interne du sol.

 - ϕ_x , ϕ_y : rotation autour de Ox, de Oy.
 - ϕ_{m} : rotation moyenne.
 - ψ : angle entre l'axe Oz et l'axe Op.
 - ω : inclinaison de la base d'une fondation.

Chapitre 4

FONDATIONS RECTANGULAIRES

Fondation rectangulaire exerçant une charge linéairement répartie sur un sol homogène d'épaisseur infinie					
Fondation rectangulaire exerçant une charge normale linéairement répartie sur un sol homogène d'épaisseur infinie	Section	4-2			
Fondation rectangulaire exerçant une charge normale uniformément répartie sur une couche de sol homogène d'épaisseur finie	Section	4-3			
Fondation rectangulaire exerçant une charge inclinée uniformément répartie sur une couche de sol homogène d'épaisseur finie	Section	4-4			
Fondation rectangulaire rigide exerçant une charge verticale sur un sol homogène d'épaisseur infinie	Section	4-5			
Remblai à base rectangulaire sur un sol homogène d'épaisseur infinie	Section	4-6			

Notations

L : Longueur du rectangle
B : Largeur du rectangle
2 a : côté du rectangle parallèle à Ox
2 b : côté du rectangle parallèle à Oy
Par conséquent : $\begin{cases} si \ 2a > 2b : 2a = L & 2b = B \\ si \ 2b > 2a : 2a = B & 2b = L \end{cases}$
Si L/B est très grand on pourra se reporter au chapitre sur les « Fondations de grande longueur ».

x

SECTION 4-1

FONDATION RECTANGULAIRE EXERÇANT UNE CHARGE LINÉAIREMENT RÉPARTIE

(Semelles, Radiers souples, Fondations de murs de soutènement et de contreforts de barrages) sur un sol homogène d'épaisseur infinie

SOMMAIRE

- Définition du sol
- Définition de la charge
- Calcul direct du tassement
- Calcul du tassement moyen
- Calcul de la rotation moyenne
- Calcul des contraintes
- Tables et Graphiques de valeurs numériques
- Expression des coefficients
- Bibliographie

DEFINITION DU SOL

Le sol est supposé homogène sur une <u>épaisseur infinie</u> ("milieu semi-infini"). S'il n'est pas homogène, les valeurs données ici pour les contraintes (en particulier pour σ_z) peuvent cependant être considérées comme une bonne approximation des contraintes réelles (sauf, peut-être, dans le cas d'une couche de sol très dur reposant sur des terrains bien plus mous). Au contraire, pour que les valeurs du tassement et de la rotation données ici soient correctes, il faut que les hypothèses (homogénéité et épaisseur infinie) soient respectées, du moins avec une bonne approximation. Par exemple, si le sol est composé d'une couche d'épaisseur H reposant sur un substratum peu déformable, il faut, pour que <u>l'erreur sur le tas-</u> <u>sement et la rotation</u> soit inférieure à 20 %, que la condition suivante soit respectée :

(1) H > L + 2 B

avec :

L, B : longueur et largeur de la fondation rectangulaire.

DEFINITION DE LA CHARGE

La fondation rectangulaire considérée ici exerce sur le sol des contraintes réparties de la façon suivante (Fig. 1) :

- les <u>contraintes normales</u> varient linéairement parallèlement au côté 2 a (aucune variation parallèle au côté 2 b);

FIG. 1. - Répartition linéaire de contraintes. Notons que celles-ci ne sont pas nécessairement parallèles.

- les <u>contraintes tangentielles</u> sont parallèles au côté 2 a et varient linéairement parallèlement à ce côté (aucune variation parallèle au côté 2 b);
- les contraintes normales et tangentielles varient indépendamment.

Sur la figure 1, les contraintes normales sont toutes des compressions et les contraintes tangentielles ont toutes le même sens. Pour plus de généralité, il est nécessaire de définir les conventions suivantes (Fig. 2) :

- l'axe Oz est vertical orienté vers le bas ;
- l'axe Ox est horizontal orienté vers la droite, parallèle au côté 2a ;
- le repère Oxyz est de sens direct ;
- en suivant l'axe 0x, on rencontre d'abord le côté numéroté 1 puis le côté numéroté 2 du rectangle chargé ;

FIG. 2. - Conventions de signes.

- les <u>contraintes normales de compression sont positives</u> (autrement dit, les contraintes normales exercées sur le rectangle sont positives si elles ont même sens que Oz);
- les <u>contraintes tangentielles</u> exercées sur le rectangle sont <u>positives</u> <u>si elles ont même sens que Ox</u>;
- <u>l'inclinaison</u> δ' est l'angle que fait une contrainte avec la normale à la surface chargée. Cet angle est positif dans le sens trigonométrique :

(2)
$$tg = \delta' = \tau/\sigma_n$$

 $\tau,\,\sigma_n$: composantes tangentielle et normale d'une contrainte $\sigma.$

La <u>distribution linéaire</u> est complètement définie par les contraintes sur les côtés 1 et 2, σ_1 et σ_2 , dont les composantes normale et tangentielle sont respectivement σ_{n1} , τ_1 et σ_{n2} , τ_2 . Cette distribution linéaire peut être considérée. comme la somme de deux charges linéaires (Fig. 3) : l'une <u>purement normale</u> définie par p et q, l'autre <u>purement tangentielle</u> définie par s et t. D'où les relations suivantes :

(3)
$$\begin{cases} p = \frac{\sigma_{n1} + \sigma_{n2}}{2} & q = \frac{\sigma_{n1} - \sigma_{n2}}{2} \\ s = \frac{\tau_{1} + \tau_{2}}{2} & t = \frac{\tau_{1} - \tau_{2}}{2} \end{cases}$$

(4) $\begin{cases} \sigma_{n1} = p + q & \sigma_{n2} = p - q \\ \tau_1 = s + t & \tau_2 = s - t \end{cases}$

Pour le calcul du tassement et des contraintes, dans la suite, nous utiliserons les quatre termes p, q, s et t pour définir la charge.

Exemple 1 :

Soit une charge linéaire définie par :

$$\begin{split} \sigma_{n1} &= 2,4 \text{ bars } (5\ 000\ \text{lb/sq. fb}) & \delta_1' &= 32^\circ \\ \sigma_{n2} &= 0,9 \text{ bar } (1\ 900\ \text{lb/sq. ft}) & \delta_2' &= 24^\circ \\ On \ demande \ de \ décomposer \ cette \ charge \ en \ p, \ q, \ s \ et \ t. \end{split}$$

FIG. 3. — Décomposition de la distribution linéaire de contraintes (notons que sur cette figure, p, q, s et t sont positives).

D'après la relation (2) : $\tau_1 = 1,5$ bar (3 150 lb/sq. ft), $\tau_2 = 0,4$ bar (850 lb/sq. ft). La relation (3) donne ensuite : p = 1,65 bar (3 450 lb/sq. ft), q = 0,75 bar (1 550 lb/sq. ft), s = 0,95 bar (2 000 lb/sq. ft), t = 0,55 bar (1 150 lb/sq. ft).

Dans cet exemple les contraintes p, q, s et t sont positives mais, en général elles peuvent avoir n'importe quel signe, comme le montre la figure 4 où les signes indiqués dans les cadres sont respectivement ceux de p, q, s et t.

4-1

FIG. 4. - Quelques exemples de décomposition. Les signes indiqués sont respectivement ceux de p, q, s et t.

Section 4-1

La <u>résultante</u> de la charge linéairement répartie est une force F dont les composantes normale et tangentielle sont N et T (Fig. 5). Son <u>point d'application</u> est défini par sa distance \mathcal{A} au côté 1 ou sa distance E_x au centre du rectangle ($E_x < 0$ si le point d'application est à gauche du centre du rectangle). Le <u>mo-</u> <u>ment</u> de la charge par rapport au centre du rectangle est \mathcal{A} compté positivement dans le sens trigonométrique. On peut établir les relations suivantes :

(5)

$$\begin{cases}
N = (\sigma_{n1} + \sigma_{n2}) \ 2 \ ab = 4 \ pab = F \ cos \ \delta \\
T = (\tau_1 + \tau_2) \ 2 \ ab = 4 \ sab = F \ sin \ \delta \\
\mathcal{M} = \frac{\sigma_{n1} - \sigma_{n2}}{3} \ a^2 \ b = \frac{4 \ qa^2 \ b}{3} = -E_x \ N \\
\begin{pmatrix}
E_x = \frac{(\sigma_{n2} - \sigma_{n1}) \ a}{3(\sigma_{n2} + \sigma_{n1})} = -\frac{qa}{3p} = -\frac{4 \ qa^2 \ b}{3N} \\
\mathcal{L} = a + E_x = \frac{2 \ a(2 \ \sigma_{n2} + \sigma_{n1})}{3(\sigma_{n2} + \sigma_{n1})} = \frac{a(3 \ p - q)}{3p}
\end{cases}$$

FIG. 5. – Définition de la résultante des charges appliquées par la fondation sur le sol. L'inclinaison de la résultance est l'angle δ , positif dans le sens trigonométrique. 4-1

10

(7)
$$\begin{pmatrix} \sigma_{n1} = \frac{N}{4 \text{ ab}} \left(1 - \frac{3 \text{ E}_x}{a} \right) \\ \sigma_{n2} = \frac{N}{4 \text{ ab}} \left(1 + \frac{3 \text{ E}_x}{a} \right) \\ \tau_1 + \tau_2 = \frac{T}{2 \text{ ab}} \end{pmatrix}$$

(8)
$$\begin{cases} p = \frac{N}{4 ab} \\ q = \frac{3 N}{4 ab} \left(1 - \ell/a\right) = -\frac{3 E_x N}{4 a^2 b} \\ s = \frac{T}{4 ab} \end{cases}$$

Exemple 2 :

Quelle est la résultante de la répartition linéaire de l'exemple 1 sachant qu'elle s'exerce sur un rectangle pour lequel 2 a = 5 m (16, 5 ft) et 2 b = 7 m(23 ft) ?

En appliquant les formules (5) on obtient : $N = 57,8 \times 10^{5} \text{ newtons (1 300 000 lb)},$ $T = 32,2 \times 10^{5} \text{ newtons (750 000 lb)}.$ D'où, l'inclinaison de la résultante : $\delta = \text{Arctg} \frac{T}{N} = 30^{\circ},$ et sa grandeur : $F = \frac{N}{\cos \delta} = 66,5 \times 10^{5} \text{ newtons = 1 500 000 lb}.$

Notons que le côté 2 b peut être supérieur, égal ou inférieur au côté 2 a. Si l'on veut appeler L la <u>longueur</u> et B la <u>largeur</u> du rectangle on aura donc, selon les cas, L = 2 b et B = 2 a, ou L = 2 a et B = 2 b.

Signalons enfin que dans le <u>cas particulier très important de la charge</u> normale uniforme on a :

q = s = t = 0

Toutes les formules se simplifient alors considérablement.

CALCUL DIRECT DU TASSEMENT

La <u>charge linéaire</u> exercée par la fondation sur le sol étant <u>définie par</u> <u>les quatre charges élémentaires</u> p, q, s et t, le tassement des points C_1 et C_2 (coins), B_1 et B_2 (milieux des côtés 2 b), A (milieu des côtés 2 a) et 0 (centre) (voir Fig. 6) est donné par les formules suivantes :

1. Si b \geq a :

(9)
$$w_{c} = \frac{1-v^{2}}{E} 2 a(pP_{c} \pm qQ_{c}) - \frac{(1+v)(1-2v)}{E} 2 a(\pm sS_{c} + tT_{c})$$

(10)
$$w_{\rm B} = \frac{1-v^2}{E} 2 a(pP_{\rm M} \pm qQ_{\rm B}) - \frac{(1+v)(1-2v)}{E} 2 a(\pm sS_{\rm B} + tT_{\rm B})$$

(11)
$$w_{A} = \frac{1-v^{2}}{E} 2 a pP_{N} + \frac{(1+v)(1-2v)}{E} 2 a tT_{A}$$

(12)
$$w_0 = \frac{1-v^2}{E} 2 a p P_0 + \frac{(1+v)(1-2v)}{E} 2 a t T_0$$

FIG. 6. - Emplacement des points où le tassement est donné. A gauche, côté N° 1 du rectangle, à droite côté N° 2. 4-1

12

2. Si b ≤ a :

(13)
$$w_{\rm C} = \frac{1-\nu^2}{E} 2 b(p_{\rm c} \pm q_{\rm c}') - \frac{(1+\nu)(1-2\nu)}{E} 2 b(\pm s_{\rm c}' \pm t_{\rm c}')$$

(14)
$$w_{\rm B} = \frac{1-\nu^2}{E} 2 b(pP_{\rm N} \pm qQ_{\rm B}^{\prime}) - \frac{(1+\nu)(1-2\nu)}{E} 2 b(\pm sS_{\rm B}^{\prime} + tT_{\rm B}^{\prime})$$

(15)
$$w_{A} = \frac{1-v^{2}}{E} 2 b pP_{M} + \frac{(1+v)(1-2v)}{E} 2 b tT_{A}'$$

0

(16)
$$w_0 = \frac{1-v^2}{E} 2 b p P_0 + \frac{(1+v)(1-2v)}{E} 2 b t T_0'$$

avec :

w : tassement ;

- E, v : module d'YOUNG et coefficient de POISSON du sol ;
 - 2 a : côté du rectangle chargé parallèle à Ox (axe suivant lequel varie la charge) ;
 - 2 b : côté du rectangle chargé parallèle à Oy (axe suivant lequel la charge ne varie pas) ;

 \pm : prendre + pour C₁ et B₁ et - pour C₂ et B₂;

P, Q, S et T : coefficients sans dimensions dépendant du rapport b/a et dont les valeurs numériques sont données sous forme de tables et de graphiques.

Exemple 3 :

Quel est le tassement des coins du rectangle indiqué dans les exemples 1 et 2 si les propriétés du sol sont E = 170 bars (355 000 lb/sq. ft) et v = 0,26?

Le rapport des côtés est : $\frac{b}{a} = \frac{7}{5} = \frac{23}{16,5} = 1,4$ Il faut donc utiliser la formule (9) car b > a. On lit dans les tableaux : $P_{c} = 0,658 \qquad Q_{c} = 0,153$ $S_{c} = 0,197 \qquad T_{c} = 0,017$ Section 4-1

13

Calculons :

$$\frac{(1 + v)(1 - 2v)}{E} = 1,78 \text{ cm/bar} = 2,8 \times 10^{-5} \text{ ft}^3/1\text{b}.$$

$$\frac{1 - v^2}{E} = 2 \text{ a} = 2,74 \text{ cm/bar} = 4,3 \times 10^{-5} \text{ ft}^3/1\text{b},$$
On obtient alors, pour le coin C₁:
w_{c1} = 2,74 (1,65 × 0,658 + 0,75 × 0,153)
- 1,78 (0,95 × 0,197 + 0,55 × 0,017)
= 2,9 cm
w_{c1} = 4,3 × 10⁻⁵ (3 450 × 0,658 + 1 550 × 0,153)
- 2,8 × 10⁻⁵ (2 000 × 0,197 + 1 150 × 0,017)
= 0,1 ft

Pour le coin C₂, il faudrait refaire le même calcul avec le signe moins lorsque l'on a le choix ±.

Exemple 4 :

Quel est le tassement du centre d'une charge normale de 1,36 bar (2 850 lb/sq. ft) uniformément répartie sur une surface rectangulaire de 5,2 m (17 ft) de longueur et 2,7 m (9 ft) de largeur et reposant sur un sol de grande épaisseur de module d'Young 55 bars (115 000 lb/sq. ft) et de coefficient de Poisson 0,5 ?

La charge étant uniforme, q = s = t = 0. Il ne reste que le terme p égal à 1,36 bar (2 850 lb/sq. ft). On obtient alors le même résultat en prenant soit la formule (12) avec 2 a = 2,7 m (9 ft) et $\alpha = b/a = 1,9$, soit la formule (16) avec 2 b = 2,7 (9 ft) et $\alpha = a/b = 1,9$:

$$w_0 = \frac{1 - (0,5)^2}{55} \times 1,36 \times 2,7 \times 1,500 = 0,075 = 7,5 \text{ cm},$$

$$w_0 = \frac{1 - (0,5)^2}{115,000} \times 2,850 \times 9 \times 1,500 = 0,25 \text{ ft} = 3 \text{ in}.$$

CALCUL DU TASSEMENT MOYEN

Le <u>tassement moyen</u> est la moyenne des valeurs du tassement de tous les points de la surface rectangulaire linéairement chargée (Fig. 7). Il est très voisin du tassement qu'aurait une <u>fondation rigide</u> de mêmes dimensions supportant la même charge totale sur le même sol. Il est donné par : 1 • Si b≯a:

 $(17) \qquad w_{m} = \frac{1-v^{2}}{E} 2 a pPm + \frac{(1+v)(1-2v)}{E} 2 a tT_{m}.$ $2 \cdot Si b \leq a :$ $(18) \qquad w_{m} = \frac{1-v^{2}}{E} 2 b pPm + \frac{(1+v)(1-2v)}{E} 2 b tT'_{m},$ avec : $w_{m} : tassement moyen ;$ p et t : deux contraintes définissant la charge linéaire exercée par la fondation sur le sol (les deux autres, q et s, n'interviennent pas) ; E, v : module d'Young et coefficient de Poisson du sol ; 2 a : côté du rectangle chargé parallèle à 0x (axe suivant lequel la charge varie).

2 b : côté du rectangle chargé parallèle à Oy (axe suivant lequel la charge ne varie pas) ;

 P_m , T_m et T'_m : coefficients sans dimensions dépendant du rapport b/a et dont les valeurs numériques sont données sous forme de tables et de graphiques.

FIG. 7. - Tassement moyen de l'aire rectangulaire chargée : le volume hachuré est égal à w_m ab.

Exemple 5 :

Quel est le tassement moyen du rectangle de l'exemple 3 ?

Comme b est plus grand que a, il faut utiliser la formule (17). On lit dans les tableaux pour $\alpha = 1,4$:

 $P_{m} = 1,112 \qquad T_{m} = 0,093$ Le tassement moyen vaut alors : $w_{m} = 2,74 \times 1,65 \times 1,112 + 1,78 \times 0,55 \times 0,093$ = 5,04 + 0,09 = 5,13 cm $w_{m} = 4,3 \times 10^{-5} \times 3,450 \times 1,112 + 2,8 \times 10^{-5} \times 1,150 \times 0,093$ $= 0,165 + 0,003 = 0,168 \text{ ft} \approx 2 \text{ in.}$

On voit que l'influence des charges tangentielles sur le tassement moyen est négligeable.

Exemple 6 :

Quel est le tassement moyen du rectangle de l'exemple 4 ?

$$w_{\rm m} = \frac{1 - (0.5)^2}{55} \times 1.36 \times 2.7 \times 1.273 = 0.064 \cdot {\rm m} = 6.4 \text{ cm}$$
$$w_{\rm m} = \frac{1 - (0.5)^2}{115\ 000} \times 2\ 850 \times 9 \times 1.273 = 0.21 \text{ ft} = 2.5 \text{ in.}$$

CALCUL DE LA ROTATION MOYENNE

Des quatre charges élémentaires (Fig. 3), seules q et s provoquent une <u>rotation</u> de la fondation. Celle-ci ne reste pas plane, mais on peut définir un plan moyen. L'angle que fait ce plan avec le plan horizontal passant par le centre de la fondation est appelé <u>rotation moyenne</u> de la fondation (Fig. 8). Cette rotation est très voisine de la rotation d'une <u>fondation rigide</u> de mêmes dimensions exerçant, sur le même sol, la même résultante de charges. Elle est donnée par :

(19)
$$\phi_{\rm m} \approx tg \phi_{\rm m} = \frac{1-\nu^2}{E} qQ_{\phi} - \frac{(1+\nu)(1-2\nu)}{E} sS_{\phi}$$

avec :

 ϕ_{m} : angle de rotation moyenne, positif dans le sens trigonométrique ; E, v: module d'Young et coefficient de Poisson du sol ; GIROUD. — Tables pour le calcul des fondations. Tome 2 3

q, s : deux contraintes définissant la charge linéaire exercée par la fondation sur le sol (les deux autres, p et t, n'interviennent pas);

FIG. 8. — Définition de la rotation d'une fondation rectangulaire sous l'effet des charges q et s définies sur la figure 3. A A est l'intersection du plan moyen avec le plan horizontal passant par le centre 0 de la fondation (Nota : étant donnée la déformée du sol, dont la trace dans le plan Ozx est représentée par la courbe, il y a plusieurs façons de définir le plan moyen PP' : nous avons pris la définition proposée par Vogt. Voir la bibliographie à la fin de la section).

16

4-

Quelle est la rotation moyenne de la fondation de l'exemple 3?

Pour b/a = 1,4 , on lit dans le tableau : $Q_{\phi} = 0,799$ et $S_{\phi} = 0,556$. Par ailleurs, d'après l'exemple 1 : q = 0,75 bar (1 550 lb/sq. ft) s = 0,95 bar (2 000 lb/sq. ft). D'où : $\phi_{m} = \frac{1 - (0,26)^{2}}{170} \times 0,75 \times 0,799 - \frac{(1 + 0,26)(1 - 0,62)}{170} \times 0,95 \times 0,556$ = 0,0029 - 0,0019 = 0,001 radian = 3,4 minutes, ou bien, en unités britanniques : $\phi_{m} = \frac{1 - (0,26)^{2}}{355\ 000} \times 1\ 550 \times 0,799 - \frac{1,26 \times 0,48}{355\ 000} \times 2\ 000 \times 0,556$ = 0,001 radian = 3,4 minutes.

CALCUL DES CONTRAINTES

Les contraintes provoquées dans le sol par la charge linéaire définie précédemment sont données par les formules suivantes :

1 · A la verticale d'un coin du rectangle chargé

(20)
$$\sigma_{x} = p \left[K_{2} - (1 - 2\nu) K_{2}^{\prime} \right] + \epsilon q \left[M_{2} - (1 - 2\nu) M_{2}^{\prime} \right] \\ - \epsilon s \left[K_{3} - (1 - 2\nu) K_{3}^{\prime} \right] - t \left[M_{3} - (1 - 2\nu) M_{3}^{\prime} \right]$$

(21)
$$\sigma_{y} = p \left[L_{2} - (1 - 2v) L_{2}^{'} \right] + \epsilon q \left[N_{2} - (1 - 2v) N_{2}^{'} \right] - \epsilon s \left[K_{5} - (1 - 2v) K_{5}^{'} \right] - t \left[M_{5} - (1 - 2v) M_{5}^{'} \right]$$

(22)
$$\sigma_z = pK_0 + \epsilon q M_0 - \epsilon s K_1 - t M_1$$

(23)
$$\tau_{xy} = -\epsilon'' p \left[K_{4} - (1 - 2\nu) K_{4}' \right] - \epsilon' q \left[M_{4} - (1 - 2\nu) M'_{4} \right] + \epsilon' s \left[L_{5} + (1 - 2\nu) L_{3}' \right] + \epsilon'' t \left[N_{5} + (1 - 2\nu) N_{3}' \right] (24)
$$\tau_{zz} = \epsilon' p L_{1} + \epsilon'' q N_{1} - \epsilon'' s K_{4} - \epsilon' t M_{4}$$$$

(25)
$$\tau_{zx} = -\epsilon p K_1 - q M_1 + s K_2 + \epsilon t M_2$$

(26) $\sigma_x + \sigma_y + \sigma_z = (1 + v)(p \Sigma_p + \epsilon q \Sigma_q - \epsilon s \Sigma_s - t \Sigma_t)$

2 · A la verticale du <u>centre</u> du rectangle chargé

$$(27) \qquad \sigma_{\mathbf{x}} = 4 p \left[K_{2} - (1 - 2 v) K_{2}^{*} \right] + 2 t \left[K_{3} - M_{3} - (1 - 2 v) (K_{3}^{*} - M_{3}^{*}) \right]$$

$$(28) \qquad \sigma_{\mathbf{y}} = 4 p \left[L_{2} - (1 - 2 v) L_{2}^{*} \right] + 2 t \left[K_{5} - M_{5} - (1 - 2 v) (K_{5}^{*} - M_{5}^{*}) \right]$$

$$(29) \qquad \sigma_{\mathbf{z}} = 4 p K_{0} + 2 t (K_{1} - M_{1})$$

$$(30) \qquad \tau_{\mathbf{xy}} = 0$$

$$(31) \qquad \tau_{\mathbf{yz}} = 0$$

$$(32) \qquad \tau_{\mathbf{zx}} = 2 q (K_{1} - M_{1}) + 4 s K_{2}$$

$$(33) \qquad \sigma_{\mathbf{x}} + \sigma_{\mathbf{y}} + \sigma_{\mathbf{z}} = (1 + v) \left[4 p \Sigma p + 2 t (\Sigma_{\mathbf{x}} - \Sigma_{\mathbf{t}}) \right]$$

avec :

p, q, s et t : quatre contraintes définissant la charge linéaire exercée par la fondation sur le sol ; ν : coefficient de Poisson du sol ; ε, ε' et ε" : trois coefficients valant + 1 ou - 1 selon le coin considéré (Voir Fig. 9) ;

FIG. 9. – Valeur des coefficients ε , ε ' et ε " des formules (20) à (26).

```
2 a et 2 b : côtés du rectangle respectivement parallèles et perpendicu-
laire à Ox (axe suivant lequel varie la charge) ;
```

z : profondeur du point où l'on calcule les contraintes.

Exemple 8 :

Quelle est la valeur de la contrainte σ_z à 2,5 m (8,2 ft) de profondeur sous le coin C_2 (Fig. 9) et sous le centre d'une fondation rectangulaire de côtés 2 a = 5 m (16,5 ft) et 2 b = 7,5 m (24,5 ft) ? Le coefficient de Poisson du sol est 0,3 et la charge est définie par les quatre contraintes : p = 1,7 bar (3 550 lb/sq. ft), q = 0,65 bar (1 360 lb/sq. ft), s = 1,05 bar (2 200 lb/sq. ft) et t = 0,55 bar (1 150 lb/sq. ft).

Contrainte σ_z sous le coin C_2 : On utilise la formule (22) avec $\varepsilon = -1$ d'après la figure 9. Pour b/a = 1,5, et z/2a = 0,5, on lit dans les tables :

$$\begin{split} & K_0 = 0,238 & M_0 = 0,112 \\ & K_1 = 0,125 & M_1 = 0,015 \\ & D'où : \\ & \sigma_z = 0,238 \times 1,7 - 0,112 \times 0,65 + 0,125 \times 1,05 - 0,015 \times 0,55 \\ & = 0,455 \text{ bar} \\ & = 0,238 \times 3,550 - 0,112 \times 1,360 + 0,125 \times 2,200 - 0,015 \times 1,150 \\ & = 950 \text{ lb/sq. ft.} \end{split}$$

Contrainte σ_{1} sous le centre :

On utilise la formule (29). Pour b/a = 1,5 et 2z/2a = 1, on lit dans les tables :

$$\begin{split} & K_0 = 0,194 \qquad K_1 = 0,075 \qquad M_1 = -0,010 \\ & D'où : \\ & \sigma_z = 4 \times 1,7 \times 0,194 + 2 \times 0,55 \ (0,075 + 0,010) \\ & = 1,41 \ bar \\ & \sigma_z = 4 \times 3 \ 550 \times 0,194 + 2 \times 1 \ 150 \ (0,075 + 0,010) \\ & = 2 \ 950 \ lb/sq. \ ft. \end{split}$$

TABLES ET GRAPHIQUES

 Calcul du tassement	
Coefficients : P_c , P_m , P_n , P_o , P_m	p. 21
$Q_{c}, Q_{b}, Q'_{c}, Q'_{b}$	p. 22
$S_c, S_b, S'_c, S'_b \dots \dots$	p. 22
$T_c, T_b, T_a, T_o, T_m \dots \dots$	p. 23
T'_{c} , T'_{b} , T'_{a} , T'_{o} , T'_{m}	p. 23
 Calcul de la rotation	
Coefficients : Q_{ϕ} , S_{ϕ}	p. 24-25
 Calcul des contraintes	
Coefficients : K_0 , K_1 , K_2 , K_3 , K_4 , K_5	p. 26-34
$K'_{2}, K'_{3}, K'_{4}, K'_{5}, \ldots, \ldots$	p. 35-38
$L_1, L_2, L_5, L'_2, L'_3 \dots$	p. 39-43
$M_0, M_1, M_2, M_3, M_4, M_5 \dots$	p. 44-51
M'_2 , M'_3 , M'_4 , M'_5	p. 52-55
$N_1, N_2, N_5, N'_2, N'_3$	p. 56-60
$\Sigma_{p}, \Sigma_{q}, \Sigma_{s}, \Sigma_{t} \dots \dots \dots$	p. 61

20

4-1

 $\alpha = b/a$ si $b \ge a$ et $\alpha = a/b$ si $a \ge b$

α	P_C	P_M	P_N	P_O	P_m	ø	P_C	P_M	P_N	PO	P_m
1	0.561	0.766	0.766	1.122	0.946	15	1.401	2.362	1.621	2.802	2.498
1.1	0.588	0.810	0.795	1.176	0.992	20	1.493	2.544	1.713	2.985	2.677
1.2	0,613	0.852	0.822	1.226	1.035	25	1.564	2.686	1.784	3.127	2.817
1.3	0.636	0.892	0.847	1.273	1.075	30	1.622	2.802	1.842	3.243	2.932
1.4	0.658	0.930	0.870	1.317	1.112	40	1.713	2.985	1.934	3.426	3.113
1.5	0.679	0.966	0.892	1.358	1.148	50	1.784	3.127	2.005	3.568	3.254
1.6	0.698	1.000	0.912	1.396	1.181	60	1.842	3.243	2.063	3.684	3.370
1.7	0.716	1.033	0.931	1.433	1.213	70	1.891	3.341	2.112	3.783	3.467
1.8	0.734	1.064	0.949	1.467	1.244	80	1.934	3.426	2.154	3.868	3.552
1.9	0.750	1.094	0.966	1.500	1.273	90	1.971	3.501	2.192	3.943	3.627
2	0.766	1.122	0.982	1.532	1.300	100	2.005	3.568	2.225	4.010	3.693
2.2	0.795	1.176	1.012	1.590	1.353	200	2.225	4.010	2.446	4.451	4.134
2.4	0.822	1.226	1.039	1.644	1.401	300	2.355	4.268	2.575	4.709	4.391
2.5	0.835	1.250	1.052	1.669	1.424	400	2.446	4.451	2.667	4.892	4.574
3	0.892	1.358	1.110	1.783	1.527	500	2,517	4.593	2.738	5.034	4.717
3.5	0.940	1.450	1.159	1.880	1.616	600	2.575	4.709	2.796	5.150	4.833
4	0.982	1.532	1.201	1.964	1.694	700	2.624	4.807	2.845	5.248	4.931
4.5	1.019	1.604	1.239	2.038	1.763	800	2.667	4.892	2.887	5.333	5.015
5	1.052	1.669	1.272	2.105	1.826	900	2.704	4.967	2.925	5.408	5.092
6	1.110	1.783	1.330	2.220	1,935	10 ³	2.738	5.034	2.958	5.476	5.158
7	1.159	1.880	1.379	2.318	2.028	104	3.471	6.500	3.691	6.941	6.623
8	1.201	1.964	1.422	2.403	2.110	10 ⁵	4.204	7.966	4.424	8.407	8.089
9	1.239	2.038	1.459	2.477	2.182	10 ⁶	4.937	9.432	5.157	9.874	9.555
10	1.272	2.105	1.493	2.544	2.246	00	∞	80	00	00	∞

2

4-1

b ≥ a				$a \ge b$							
b/a	QC	Q_B	a/b	Q'C	Q'_B	a/b	Q'C	Q'_B			
1	0.149	0.263	1	0.149	0.263	15	0.785	0.995			
1.1	0.150	0.269	1.1	0.162	0.282	20	0.872	1.084			
1.2	0.151	0.274	1.2	0.174	0.300	25	0.940	1.154			
1.3	0.152	0.279	1.3	0.187	0.317	30	0.995	1.211			
1.4	0.153	0.282	1.4	0.198	0.334	40	1.084	1.301			
1.5	0.154	0.286	1.5	0.210	0.349	50	1.154	1.371			
1.6	0.154	0.289	1.6	0.221	0.364	60	1.211	1.429			
1.7	0.155	0.291	1.7	0.232	0.379	70	1.259	1.478			
1.8	0.155	0.294	1.8	0.243	0.392	80	1.301	1.520			
1.9	0.156	0.296	1.9	0.253	0.406	90	1.338	1.557			
2	0.156	0.297	2	0.263	0.418	100	1.371	1.590			
2.2	0.157	0.300	2.2	0.282	0.442	200	1.590	1.810			
2.4	0.157	0.303	2.4	0.300	0.465	300	1.719	1.939			
2.5	0.157	0.304	2.5	0.309	0.475	400	1.810	2.031			
3	0.158	0.308	3	0.349	0.524	500	1.881	2.101			
3.5	0.158	0.310	3.5	0.386	0.566	600	1.939	2.159			
4	0.158	0.312	4	0.418	0.603	700	1.988	2.208			
4.5	0.159	0.313	4.5	0.448	0.636	800	2.031	2.251			
5	0.159	0.314	5	0.475	0.666	900	2.068	2.288			
6	0.159	0.315	6	0.524	0.719	10 ³	2.101	2.322			
7	0.159	0.316	7	0.566	0.765	104	2.834	3.055			
8	0.159	0.317	8	0.603	0.804	105	3.567	3.788			
10	0.159	0.317	9	0.636	0.840	108	4.300	4.521			
00	0.159	0.318	10	0.666	0.872	00	60				

	b ≥ a			$a \ge b$							
b/a	S _C	S _B	a/b	<i>s</i> ' _{<i>c</i>}	S'B	a/b	s'_{C}	S' _B			
1	0.180	0.276	1	0.180	0.276	15	0.590	0.701			
1.1	0.185	0.288	1.1	0.192	0.290	20	0.636	0.746			
1.2	0.190	0.299	1.2	0.204	0.303	25	0.671	0.78			
1.3	0.194	0.309	1.3	0.214	0.315	30	0.701	0.81			
1.4	0.197	0.318	1.4	0.225	0.326	40	0.746	0.85			
1.5	0.200	0.327	1.5	0.234	0.337	50	0.782	0.89			
1.6	0.203	0.335	1.6	0.243	0.347	60	0.811	0.92			
1.7	0.206	0.342	1.7	0.252	0.356	70	0.835	0.946			
1.8	0.208	0.348	1.8	0.260	0.365	80	0.857	0.96'			
1.9	0.210	0.355	1.9	0.268	0.373	90	0.875	0.986			
2	0.212	0.360	2	0.276	0.381	100	0.892	1.003			
2.2	0.215	0.371	2.2	0.290	0.396	200	1.002	1.11			
2.5	0.219	0.384	2.4	0.303	0.410	300	1.067	1.17			
3	0.224	0.401	2.5	0.309	0.416	400	1.113	1.22			
3.5	0.228	0.413	3	0.337	0.445	500	1.148	1.25			
4	0.230	0.423	3.5	0.361	0.469	600	1.177	1.28			
4.5	0.232	0.431	4	0.381	0.491	700	1.202	1.31			
5	0.234	0.438	4.5	0.400	0.509	800	1.223	1.33			
7	0.239	0.455	5	0.416	0.526	900	1.242	1.35			
10	0.242	0.468	6	0.445	0.555	10 ³	1.259	1.36			
15	0.245	0.479	7	0.469	0.579	104	1.625	1.73			
20	0.246	0.484	8	0.491	0.601	105	1.991	2.102			
40	0.248	0.492	9	0.509	0.619	10 ⁶	2.358	2.469			
00	0.250	0.500	10	0.526	0.638	00	00	00			

	$b \ge a$												
$\frac{b}{a}$	T _C	TB	T _A	T _O	T _m	b a							
1	0.021	0.057	0.100	0.159	0.080	1							
1.1	0.020	0.056	0.102	0,166	0.083	1.1							
1.2	0.019	0.054	0.104	0.171	0.087	1.2							
1.3	0.018	0.052	0.105	0.176	0.090	1.3							
1.4	0.017	0.051	0.107	0.181	0.093	1.4							
1.5	0.016	0.049	0.108	0.185	0,095	1.5							
1.6	0.015	0.048	0,109	0.188	0.098	1.6							
1.7	0.014	0.046	0,110	0.191	0.100	1.7							
1.8	0.014	0.045	0.110	0.194	0.102	1.8							
1.9	0.013	0.043	0.111	0.197	0.104	1.9							
2	0.012	0.042	0.112	0.199	0.106	2							
2.2	0.011	0.039	0.113	0.204	0.109	2.2							
2.5	0.010	0.036	0,114	0.209	0,113	2.5							
3	0.009	0.031	0.116	0.215	0.119	3							
3,5	0.007	0.028	0.117	0.220	0.124	3.5							
4	0.007	0.025	0.118	0.224	0.127	4							
5	0.005	0.020	0.120	0.229	0.133	5							
7	0.004	0.015	0.121	0.235	0.140	7							
10	0.003	0.010	0.122	0.239	0.146	10							
15	0.002	0.007	0.123	0.243	0.151	15							
20	0.001	0.005	0.124	0.245	0.155	20							
50	0.001	0.002	0.124	0.248	0.161	50							
100	0.000	0.001	0,125	0.249	0.163	100							
80	0	0	0.125	0,250	0.167	80							

	a	≥ b		a ≥ b							
$\frac{a}{b}$	T_A^r	T_O^i	T'm	a b	T_C^*	T_B^i	a b	<i>T</i> ['] <i>C</i>	T_B^*		
1	0.100	0.159	0.080	1	0.021	0.057	15	0,288	0.390		
1.1	0.107	0.168	0.083	1.1	0.024	0.064	20	0.330	0,434		
1.2	0.114	0.176	0.087	1.2	0.028	0.071	25	0.363	0.468		
1.3	0.121	0.183	0.090	1.3	0.032	0.078	30	0.390	0,497		
1.4	0.127	0.189	0.093	1.4	0.035	0.084	40	0.434	0.541		
1.5	0.133	0,195	0.096	1.5	0.039	0.090	50	0.468	0.576		
1.6	0.139	0.201	0.098	1.6	0.043	0.096	60	0,497	0.605		
1.7	0.144	0.206	0.100	1.7	0.046	0.102	70	0.521	0.629		
1.8	0.150	0.210	0,102	1.8	0.050	0.108	80	0.541	0,650		
1.9	0.154	0.215	0.104	1.9	0.053	0.114	90	0.560	0,669		
2	0.159	0.219	0.106	2	0.057	0.119	100	0.576	0.685		
2.2	0.168	0.226	0.110	2.2	0.064	0.129	200	0.685	0.795		
2.5	0,179	0,235	0.114	2.4	0.071	0.139	300	0,749	0.859		
3	0.195	0.247	0.119	2.5	0.074	0.144	400	0.795	0,905		
3.5	0.208	0.255	0.124	3	0.090	0.165	500	0.830	0.940		
4	0.219	0.262	0.127	3.5	0,105	0.185	600	0.859	0.969		
5	0.235	0.273	0.133	4	0.119	0.202	700	0.884	0,994		
7	0.255	0,285	0.139	4.5	0.132	0.217	800	0.905	1.015		
10	0.273	0.294	0.145	5	0.144	0.232	900	0.924	1.034		
15	0.287	0.302	0.149	6	0.165	0.257	103	0,940	1.051		
20	0.294	0.306	0.151	7	0.185	0.278	104	1,307	1.417		
50	0.308	0.313	0.156	8	0.202	0.297	105	1.673	1.784		
100	0.313	0.316	0.158	9	0.217	0.315	106	2,039	2.150		
00	0.318	0.318	0.159	10	0.232	0,330	00	90	80		

24

+

Chapitre

Section 4-1

			a e				
b⁄a	Qφ	Sφ		^b /a	Qφ	Sφ	6/
0.000 0.002 0.004	0.000 0.015 0.027	0.000 0.001 0.003		0.072 0.074 0.076	0.234 0.238 0.242	0.064 0.065 0.067	0.6 0.6 0.7
0.006 0.008 0.010	0.038 0.047 0.057	0.005 0.007 0.009		0.078 0.080 0.082	0 • 246 0 • 250 0 • 254	0.069 0.070 0.072	0.7 0.8 0.8
0.012 0.014 0.016	0.065 0.073 0.081	0.011 0.013 0.015		0.084 0.086 0.088	0•258 0•262 0•266	0.073 0.075 0.077	0.9 0.9 1.0
0.018 0.020 0.022	0.089 0.096 0.103	0.016 0.018 0.020		0.090 0.092 0.094	0.269 0.273 0.277	0.078 0.080 0.081	1.1 1.2 1.3
0.024 0.026 0.028	0.110 0.117 0.123	0.022 0.024 0.025		0.096 0.098 0.100	0•280 0•284 0•287	0.083 0.085 0.086	1.4 1.5 1.6
0.030 0.032 0.034	0.129 0.135 0.141	0.027 0.029 0.031		0.110 0.120 0.130	0•304 0•320 0•335	0.094 0.102 0.109	1.7 1.8 1.9
0.036 0.038 0.040	0.147 0.153 0.158	0.033 0.034 0.036		0.140 0.150 0.160	0•349 0•362 0•375	0.117 0.124 0.131	2.0 2.1 2.2
0.042 0.044 0.046	0.164 0.169 0.174	0.038 0.040 0.041		0.170 0.180 0.190	0•387 0•399 0•410	0.138 0.145 0.152	2.3 2.4 2.5
0.048 0.050 0.052	0.179 0.184 0.189	0.043 0.045 0.047		0.200 0.220 0.240	0.421 0.441 0.460	0.159 0.172 0.184	2.6 2.7 2.8
0.054 0.056 0.058	0•194 0•199 0•204	0.048 0.050 0.052		0.250 0.260 0.280	0•469 0•477 0•494	0•191 0•197 0•208	2.9 3.0 3.5
0.060 0.062 0.064	0•208 0•213 0•217	0.053 0.055 0.057		0.300 0.350 0.400	0.509 0.543 0.572	0.220 0.247 0.273	4.0 5.0 7.0
0.066 0.068 0.070	0.222 0.226 0.230	0.059 0.060 0.062		0.450 0.500 0.550	0.597 0.620 0.639	0.296 0.318 0.339	10.0 20.0 co

b/a	Qφ	Sφ
0.600	0.657	0.358
0.650	0.673	0.376
0.700	0.687	0.393
0.750	0.700	0•409
0.800	0.712	0•424
0.850	0.722	0•438
0.900	0•732	0•452
0.950	0•741	0•465
1.000	0•750	0•477
1.100	0•764	0.500
1.200	0•777	0.520
1.300	0•789	0.539
1.400	0.799	0•556
1.500	0.808	0•572
1.600	0.815	0•586
1.700	0.823	0.600
1.800	0.829	0.612
1.900	0.835	0.624
2.000	0.840	0.635
2.100	0.845	0.645
2.200	0.849	0.654
2.300	0.854	0.663
2.400	0.857	0.672
2.500	0.861	0.680
2.600	0•864	0.687
2.700	0•867	0.695
2.800	0•870	0.702
2.900	0.873	0.708
3.000	0.875	0.714
3.500	0.886	0.741
4.000	0.894	0.763
5.000	0.906	0.796
7.000	0.919	0.839
10.000	0.929	0.876
20.000	0.942	0.927
co	0.954	1.000

25

4-1
26

Chapitre 4

K	0	~	しゅうしゅう	かしゅうしゅう	ひつつつつ	~~~~~	~~~~~	ara l	b/a	~	00000	~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ちょうしょう	0.0000	ø
-	0	0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	8
	0 0, 0,	0.000 0.000 0.000	0.250 0.137 0.076	0.250 0.204 0.136	0.250 0.234 0.187	0.250 C.240 0.202	0.250 0.244 0.218	0.250 0.247 0.231	0.250 0.249 0.240	0.25C 0.249 0.243	C.250 0.249 0.244	0.25C 0.249 C.244	0.250 0.249 C.244	0.250 0.249 0.244	0.250 0.249 0.244	0.250 0.249 0.244
_	0, 0, 0,	5 0.000 6 J.000 8 0.000	0.061 0.051 0.037	0.113 0.096 0.071	0.164 0.143 0.111	0.181 0.161 0.127	0.200 0.182 0.148	0.218 0.204 0.173	0.232 0.223 0.200	0.238 0.231 0.214	0.239 0.233 0.218	C.24C 0.234 0.219	C.240 C.234 C.220	C.240 C.234 C.22C	0.240 0.234 0.220	0.240 0.234 0.220
coi	1, 1,	0.000 0.000 0.000	0.028 0.022 0.018	C.055 0.043 U.035	0.087 0.069 0.056	0.101 0.081 0.066	0.120 0.098 0.080	0.145 0.121 0.101	0.175 0.152 0.131	0.194 0.173 0.154	0.200 0.182 0.164	0.202 0.185 0.169	C.203 C.187 C.171	C.204 C.189 O.174	0.205 0.189 0.174	0.205 0.189 0.174
= /2a		6 0.000 6 0.000 9 0.000	0.016 0.014 0.012	0.031 0.028 0.024	0.051 0.046 0.039	0.060 0.055 0.046	0.073 0.067 0.056	0.092 0.085 0.072	0.121 0.112 0.097	0.145 0.136 0.121	0.156 0.148 0.133	C.161 O.154 O.140	C.164 C.157 C.143	C.166 C.160 O.147	0.167 0.160 0.148	0.167 0.160 0.148
ñ	2, 2, 3	0.000 0.000 0.000	0.010 0.007 0.005	0.020 0.013 0.010	0.033 0.022 0.016	0.039 0.027 0.019	0.048 0.033 0.024	0.061 0.043 0.031	0.084 0.060 0.045	0.107 0.080 0.061	0.120 0.093 0.073	0.127 0.101 0.081	C.131 O.106 C.087	0.136 0.113 0.096	0.137 0.115 0.099	0.137 0.115 0.099
	4 5 1	0.000 0.000 0.000	0.003 0.002 0.000	0.006 0.094 0.001	0.009 0.006 0.002	0.011 0.007 0.002	0.014 0.009 0.002	0.019 0.012 0.003	0.027 0.018 0.005	0.038 0.026 0.007	0.048 0.033 0.009	C.055 C.039 O.011	C.060 C.043 C.013	0.071 0.055 0.020	0.076 0.061 0.028	0.076 0.062 0.032
	1 2 5	0.000	0.000 0.000 0.000	0.000 6.000 0.000	0.001 0.000 0.000	0.001 0.000 0.000	0.001 0.001 0.000	0.001 0.001 0.000	0.002 0.001 0.000	0.003 0.002 0.000	0.004 0.002 0.000	0.005 0.003 0.000	0.006 C.004 0.001	0.010 0.006 0.001	0.016 0.010 0.002	0.021 0.016 0.006

K		00	~~~~~~	LANN	9.4.9.9.9	\$0.000	いしょうしょう	so l	b/a	~	91919191919	~~~~		~~~~~~	9-19-19-19-19-19-19-19-19-19-19-19-19-19	0
	ç.	0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	8
	0 0,2 0,4	0.000 0.000 0.000	0.159 0.071 0.037	0.159 0.111 0.067	0.159 0.135 0.095	0.159 C.140 O.105	0.159 0.145 0.115	0.159 0.149 0.125	0.159 0.152 0.133	0.159 0.153 0.136	0.159 0.153 0.137	0.159 0.153 0.137	0.159 0.153 0.137	C.159 O.153 O.137	0.159 0.153 0.137	0.159 0.153 0.137
1 tre	0,5 0,6 0,8	0.000 0.000 0.000	0.028 0.023 0.015	C.054 0.043 C.029	0.079 0.066 0.046	0.089 0.075 0.053	0.100 0.085 0.062	0.111 0.097 0.073	0.121 0.109 0.086	0.125 0.115 0.093	0.127 0.116 0.095	0.127 0.117 0.096	0.127 0.117 0.097	C.127 O.117 O.097	0.127 C.117 C.097	0.127 0.117 0.097
c en	1 1,2 1,4	0.000 0.000 0.000	0.010 0.007 0.005	0.020 0.014 0.010	0.032 0.023 0.017	0.037 0.027 C.020	0.045 0.033 0.024	0.054 0.040 0.030	0.067 0.051 0.040	0.075 0.059 0.047	0.077 0.062 C.050	C.C79 C.O64 C.O52	0.079 0.064 0.053	C.079 C.065 C.054	0.080 0.065 0.054	0.080 0.065 0.054
= ^z / _{2a} = ^z / _a	1,5 1,6 1,8	0.000 0.000 0.000	0.004 0.004 0.003	0.009 0.008 0.006	0.014 0.013 0.010	0.017 0.015 0.011	0.021 0.018 0.014	0.026 0.023 0.018	0.035 0.031 0.024	0.042 0.038 0.030	C.045 C.041 C.034	0.047 0.043 0.035	C.048 C.044 O.036	C.049 C.045 O.037	0.049 0.045 0.038	0.049 0.045 0.038
3	2 2,5 3	0.000 0.000 0.000	0.002 0.001 0.001	C.004 0.003 C.C02	0.007 0.004 0.003	0.009 0.005 0.003	0.011 0.006 0.004	0.014 0.008 0.005	0.019 0.011 0.007	0.025 0.015 0.010	0.028 0.018 0.012	C.029 C.019 O.013	C.030 C.02C C.014	C.032 C.022 O.015	0.032 0.022 0.016	0.032 0.022 0.016
	4 5 1 0	0.000 0.000 0.000	0.000 0.000 0.000	0.001 0.000 0.000	0.001 0.001 0.000	0.001 0.001 0.000	0.002 0.001 0.000	0.002 0.001 0.000	0.003 0.002 0.000	0.005 0.003 0.000	0.003	C.CO7 0.CO4 0.OO1	C.007 0.004 C.001	0.009 0.005 0.001	0.009 0.006 0.001	0.009 0.006 0.002
	15 20 50	0.000	0.000 0.000 0.000	C.000 C.COD C.000	0.000 0.000 0.000	0.000 0.000 6.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000	C.COO C.COO C.COO	0.000	0.001 0.000 0.000	0.001 0.000 0.000

Section 4-1

4-1

GIROUD. -- Tables pour le calcul des fondations. Tome 2

4

K	2	00	~~~~~~	500000	りょうようようようよう	0~0~0~0~0	~~~~~	~ K	b/a	Ø	0-0-0-0-0-	0~0~0~0	~~~~~~	n Order Order of	~~~~~	0
	-	0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	8
	0	0.000	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250	C.250	0.250	0.250
	0,2	0.000	0.069	0.116	0.149	0.159	0.169	0.177	0.184	0.187	0.188	0.188	0.188	0.188	0.188	0.188
	0,4	0.000	0.031	0.058	0.085	0.095	0.106	0.118	0.128	0.133	0.134	0.134	0.134	0.135	0.135	0.135
n tre	0,5 0,6 0,8	0.000 0.000 0.000	0.022 0.017 0.009	0.043 0.032 0.018	0.064 0.049 0.029	0.073 0.056 0.034	0.083 0.065 0.040	0.094 0.075 0.047	0.105 0.086 0.057	0.110 0.091 0.062	0.112 0.093 0.064	0.112 0.093 0.064	0.112 0.094 0.065	0.113 0.094 0.065	0.113 0.094 0.065	0.113 0.094 0.065
coi cen	1 1,2 1,4	0.000 0.000 0.000	0.006 0.003 0.002	0.011 0.007 0.004	0.018 0.011 0.007	0.021 0.013 0.008	0.025 0.016 0.010	0.030 0.020 0.013	0.037 0.025 0.017	0.042 0.029 0.020	0.044 0.031 0.022	0.045 0.032 0.023	0.045 0.032 0.023	0.045 0.032 0.023	0.045 0.032 0.023	0.045 0.032 0.023
$= \frac{z}{2a}$	1,5	0.000	0.002	0.004	0.006	0.007	0.008	0.011	0.014	0.017	0.019	0.019	C.020	0.020	0.020	0.020
	1,6	0.000	0.001	0.003	0.005	0.006	0.007	0.009	0.012	0.015	0.016	0.017	C.017	0.017	0.017	0.017
	1,8	0.000	0.001	0.002	0.003	0.004	0.005	0.006	0.008	0.011	0.012	0.012	C.013	0.013	0.013	0.013
N	2	0.000	0.001	0.001	0.002	0.003	0.003	0.004	0.006	0.008	0.009	0.009	0.010	0.010	0.010	0.010
	2,5	0.000	0.000	0.001	0.001	0.001	0.002	0.002	0.003	0.004	0.005	0.005	0.005	0.006	0.006	0.006
	3	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.002	0.002	0.003	0.003	0.003	0.003	0.003	0.003
	4	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.002
	5	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.001
	1 0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	15	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	50	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

K		00	きょうしょう	~~~~~	00000	D-D-D-D-D	~~~~~~~	uno I	b/a	~	00000	~~~~~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~	0
		0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	8
	0 0,2 0,4	0.000	INFINI 0.107 0.037	INF IN I 0.189 0.069	INFINI 0.259 0.104	INFINI 0.282 0.117	INFINI 0.307 0.133	INFINI 0.332 0.150	INFINI 0.353 0.167	INFINI 0.362 0.175	INFINI 0.364 0.177	INFINI 0.365 0.177	INFINI 0.365 0.178	INFINI C.365 O.178	INFINI 0.366 0.178	INFINI 0.366 0.178
1 tre	0,5 0,6 0,8	0.000 0.000 0.000	0.023 0.016 0.007	0.045 0.030 0.014	0.069 0.047 0.023	0.079 0.054 0.026	0.091 0.063 0.031	0.104 0.074 0.038	0.118 0.085 0.045	0.125 0.091 0.050	0.127 0.093 0.052	0.128 0.094 0.052	0.129 0.094 0.052	0.129 0.094 0.053	0.129 0.095 0.053	0.129 0.095 0.053
c o i i c e n	1 1,2 1,4	0.000 0.000 0.000	0.004 0.002 0.001	0.007 0.004 0.002	0.012 0.006 0.004	0.014 0.007 0.004	0.016 0.009 0.005	0.020 0.011 0.006	0.025 0.014 0.009	0.028 0.017 0.010	0.030 0.018 0.011	0.030 0.018 0.011	0.030 0.018 0.012	0.031 0.019 0.012	0.031 0.019 0.012	0.031 0.019 0.012
= ^z / _{2a}	1,5 1,6 1,8	0.000 0.000 0.000	0.001 0.001 0.000	0.002 0.001 0.001	0.003 0.002 0.001	0.003 0.003 0.002	0.004 0.003 0.002	0.005 0.004 0.002	0.007 0.005 0.003	0.008 0.006 0.004	0.009 0.007 0.005	0.009 0.007 0.005	0.009 0.008 0.005	0.010 0.008 0.005	0.010 0.008 0.005	0.010 0.008 0.005
2	2 2,5 3	0.000 0.000 0.000	0.000 0.000 0.000	0.001 0.000 0.000	0.001 0.000 0.000	0.001 0.000 0.000	0.001 0.000 0.000	0.002 0.001 0.000	0.002 0.001 0.000	0.003 0.001 0.001	0.003 0.001 0.001	0.003 0.001 0.001	0.004 0.002 0.001	0.004 0.002 0.001	0.004 0.002 0.001	0.004 0.002 0.001
	4 5 10	D.000 D.000 D.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	C.000 0.000 0.000	C.000 C.000 G.000	0.000 0.000 0.000	0.000 0.000 0.000
	、15 20 50	0.000 D.000 0.000	0.000 0.000 -0.000	0.000 0.000 -0.000	0.000 0.000 -0.000	0.000 0.000 -0.000	0.000 0.000 -0.000	0.000 0.000 0.000	0.000 0.000 -0.000	0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 -0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000

K	1	000	rononom	しょうしょうしょう	00000Q	00000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		b⁄a	~	9-9-9-9-9-9	~~~~~~	しょうしょうしょう	ひょうりょうしょう	ひつむむ	¢.
	T	0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	8
2020	0 0,2 0,4	0.000	0.159 0.017 0.034	0.159 0.046 0.016	0.159 0.076 0.034	U.159 0.086 0.043	0.159 0.097 0.054	0.159 0.108 0.068	0.159 0.119 0.084	0.159 0.124 0.094	0.159 0.126 0.097	0.159 C.127 C.098	0.159 C.127 C.099	0.159 C.128 J.100	0.159 0.128 0.100	0.159 0.128 0.100
0000	0,5 0,6 0,8	0.000 0.000 0.000 0.000	0.003 0.002 0.001	0.010 0.007 C.004	0.024 0.017 0.009	0.031 0.922 0.012	C.040 0.030 0.017	0.054 0.042 0.026	0.070 0.058 0.039	0.080 0.068 0.049	0.084 0.073 C.054	C.086 C.075 C.057	0.087 0.076 C.058	0.088 0.077 0.059	0.088 0.077 0.060	0.088 0.077 0.060
E C	1 1,2 1,4	0.000 0.000 0.000	0.001 0.000 0.000	0.002 0.001 0.001	0.005 0.003 0.002	0.007 0.004 0.003	C.010 0.096 0.094	0.016 0.010 0.007	0.026 0.018 0.012	0.036 0.026 0.019	C.040 0.030 0.023	0.043 C.C33 C.O25	C.044 0.034 C.027	C.046 C.036 C.029	0.047 0.037 0.030	0.047 0.037 0.030
22	1,5 1,6 1,8	0.000 0.000 0.000	0.000 0.000 0.000	0.001 0.000 0.000	0.002 0.001 0.001	0.002 J.002 C.001	0.003 0.003 0.002	0.005 0.005 0.003	0.010 0.008 0.006	0.016 0.014 0.010	0.020 0.017 C.013	0.022 0.020 0.015	0.024 0.021 C.017	C.026 C.023 C.019	0.027 0.024 0.020	0.027 0.024 0.020
-	2 2,5 3	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.001 0.000 0.000	0.001 0.000 0.000	0.001 0.001 0.000	0.002 0.001 0.001	0.004 0.002 0.001	0.008 0.004 0.002	C.010 C.006 C.003	0.012 C.007 C.C04	0.014 C.008 C.C05	0.016 0.010 0.007	0.017 0.011 0.008	0.017 0.011 0.008
0000	4 5 10	0.000 0.000 0.000	0.000 0.000 0.000	C.000 0.000 0.000	0.000 0.000 0.000	0.000 U.000 U.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.001 0.000 0.000	0.001 0.001 6.000	C.002 0.C01 0.CC0	C.002 C.001 C.000	0.004 0.002 0.000	0.004 0.003 0.001	0.005 0.003 0.001
~~~~	15 20 50	0.000 0.000 U.COO	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 6.000 6.000	0.000 C.COO C.COO	C.000 C.000 C.000	0.000	0.000 0.000 0.000	0.000 0.000 0.000

~

K,		Ş	~~~~~~~~~	20000	ローローローロー	-D-D-D-D-D	uranan	sino I	b/a	~	00000	~~~~~		zwowan	0.0.0.0.0.	0
		0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	ω
	0 0,2 0,4	0.000 0.000 0.000	INFINI 0.005 0.001	INFINI 0.027 0.005	INFINI 0.066 0.017	INF INI 0.085 0.025	INFINI 0.109 0.038	INFINI 0.142 0.059	INFINI 0.185 0.091	INFINI 0.218 0.118	INFINI 0.234 0.133	INFINI 0.242 0.141	INFINI 0.247 0.145	INFINI 0.255 0.153	INF INI 0.258 0.156	INFINI 0.259 0.158
n tre	0,5 0,6 0,8	0.000 0.000 0.000	0.000 0.000 0.000	0.003 0.002 0.001	0.010 0.006 0.002	0.015 0.009 0.004	0.024 0.015 0.007	0.039 0.026 0.013	0.065 0.048 0.026	0.090 0.070 0.042	0.104 0.082 0.053	0.111 0.089 0.059	0.116 0.094 0.063	0.123 0.101 0.070	0.127 0.105 0.074	0.128 0.106 0.075
coi cen	1 1,2 1,4	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.001 0.001 0.000	0.002 0.001 0.001	0.003 0.002 0.001	0.007 0.004 0.002	0.015 0.009 0.005	0.027 0.017 0.011	0.035 0.024 0.016	0.040 0.028 C.020	0.044 0.032 0.023	0.051 0.038 0.029	0.054 0.041 0.032	0.055 0.042 0.033
$=\frac{z}{2a}$	1,5 1,6 1,8	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.001 0.001 0.000	0.002 0.001 0.001	0.004 0.003 0.002	0.009 0.007 0.005	0.013 0.011 0.008	0.017 0.015 0.011	0.020 0.017 0.013	0.025 0.022 0.017	0.028 0.025 0.020	0.029 0.026 0.021
N	2 2,5 3	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.001 0.001 0.000	0.003 0.001 0.001	0.006 0.003 0.001	0.008 0.004 0.002	0.010 0.005 0.003	0.014 0.008 0.005	0.017 0.011 0.007	0.018 0.012 0.008
	4 5 1 0	0.000 0.000 0.000	0.000 0.000 -0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.001 0.000 0.000	0.001 0.000 0.000	0.002 0.001 0.000	0.004 0.002 0.000	0.005 0.003 0.001
	15 20 50	0.000 0.000 0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	0.000 -0.000 -0.000	0.000 -0.000 -0.000	0.000 0.000 -0.000	0.000 0.000 0.000	0.000 0.000 -0.000	0.000 0.000 -0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000	0.000 0.000 0.000	0.000 0.000 0.000

4-1

Chapitre 4

C+
н.
0
Þ

K	7	90	うしょうしょう	re Du De Du De De De de	かしゅうしゅう	6-0-0-0-0	x000000		b/a	~~	しょうしょうょう	00000	~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	しょうしょうようが	•
	2	0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	ω
	0	0.000	0.234	0.219	0.199	0.189	0.176	0.156	0.125	0.094	0.074	0.061	0.051	0.031	0.016	0.000
	0,2	0.000	0.059	0.097	0.118	0.121	0.122	0.118	0.103	0.082	0.067	C.056	C.048	0.030	0.016	0.000
	0,4	0.000	0.026	0.048	C.069	0.075	0.082	0.086	0.083	0.071	0.06C	0.051	C.045	0.029	0.015	0.000
n tre	0,5 0,6 0,8	0.000 0.000 0.000	0.019 0.015 0.009	0.036 0.028 C.C18	0.054 0.043 0.029	0.060 0.049 0.033	0.067 0.056 0.039	0.073 0.062 0.046	0.074 0.066 0.052	0.066 0.061 0.052	0.056 0.053 0.047	0.049 0.047 C.043	C.043 0.041 C.038	C.028 O.028 O.026	0.015 0.015 0.015	0.000 0.000 0.000
coi: cen	1 1,2 1,4	0.000 0.000 0.000	0.007 0.005 0.004	0.013 0.009 0.007	0.021 0.015 0.012	0.024 0.018 0.014	0.029 0.022 0.017	0.035 0.027 0.021	0.042 0.034 0.027	0.044 0.037 0.032	0.042 0.037 0.033	0.039 0.035 0.032	0.035 0.032 C.03C	0.025 0.024 C.023	0.014 0.014 0.014	0.000 0.000 0.000
$=\frac{z}{2a}$	1,5	0.000	0.003	0.006	0.010	0.012	0.015	0.019	0.025	0.029	0.031	0.030	0.029	0.022	0.014	0.000
	1,6	0.000	0.003	0.006	0.009	0.011	0.013	0.017	0.023	0.027	0.029	0.028	0.027	0.022	0.013	0.000
	1,8	0.000	0.002	0.005	0.007	0.009	0.011	0.014	0.019	0.024	0.025	0.026	C.025	0.021	0.013	0.000
J.	2	0.000	0.002	0.004	0.006	0.007	0.009	0.012	0.016	0.020	0.023	0.023	0.023	0.020	0.013	0.000
	2,5	0.000	0.001	0.002	0.004	0.005	0.006	0.008	0.011	0.015	0.017	C.018	0.019	0.017	0.012	0.000
	3	0.000	0.001	C.CO2	0.003	0.003	0.004	0.006	0.008	0.011	0.013	C.015	C.015	0.015	0.011	0.000
	4	0.000	0.000	0.001	0.002	0.002	0.002	0.003	0.005	0.007	0.008	0.010	0.011	C.012	0.010	0.000
	5	0.000	0.000	0.001	0.001	0.001	0.002	0.002	0.003	0.004	0.006	0.007	0.008	O.009	0.009	0.000
	1 0	0.000	0.000	C.COO	0.000	0.000	0.000	0.001	0.001	0.001	0.002	0.002	0.002	C.003	0.005	0.000
	15	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.002	0.003	0.000
	20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.000
	50	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

K'	,	20	うしょうしょう	or of the second se	びゅうこう	00000	~~~~~~~	~ K	b/a	Ś	じょうしょう	~~~~~	00000	~~~~~~	~~~~~~	~
	>	0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	8
	0 0,2 0,4	0.000 0.000 0.000	0.143 0.025 0.009	0.128 0.040 0.016	0.109 0.048 0.023	0.100 0.049 0.025	0.088 0.048 0.026	0.071 0.044 0.026	0.047 0.033 0.023	0.027 0.021 0.016	0.017 0.014 0.011	0.011 0.010 0.008	0.008 0.007 0.006	0.003 0.003 0.003	0.001 0.001 0.001	0.000 0.000 0.000
อ่า	0,5 0,6 0,8	0.000	0.006 0.004 0.002	C.011 U.008 0.C04	0.016 0.012 0.007	0.018 0.013 0.008	0.020 0.015 0.009	0.021 0.016 0.010	0.019 0.016 0.011	0.014 0.012 0.009	0.010 0.009 0.007	0.008 0.007 0.006	0.006 0.005 0.005	0.003 0.002 0.002	0.001 0.001 0.001	0.000 0.000 0.000
c o i n c en t	1 1,2 1,4	0.000	0.001 0.001 0.001	0.003 0.002 0.001	0.004 0.003 0.002	0.005 0.003 0.002	0.006 0.004 0.003	0.007 0.005 0.003	0.008 0.006 0.004	0.007 0.006 0.004	0.006 0.005 0.004	0.005 0.004 0.004	0.004 0.004 C.003	0.002 0.002 0.002	0.001 0.001 0.001	0.000 0.000 0.000
2.a	1,5 1,6 1,8	0.000	0.000 0.000 0.000	0.001 C.001 0.001	0.002 0.001 0.001	0.002 0.002 0.001	0.002 0.002 0.001	0.003 0.002 0.002	0.004 0.003 0.002	0.004 0.003 0.003	0.004 0.003 0.003	0.003 0.003 0.003	0.003 0.003 C.002	0.002 0.002 0.001	0.001 0.001 0.001	0.000 0.000 0.000
	2 2,5 3	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.001 0.000 0.000	0.001 0.000 0.000	0.001 0.001 0.000	0.001 0.001 0.000	0.002 0.001 0.001	0.002 0.001 0.001	0.002 0.001 0.001	0.002 0.001 0.001	0.002 0.001 0.001	0.001 0.001 0.001	0.001 0.000 0.000	0.000 0.000 0.000
	4 5 10	0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.001 0.000 0.000	0.001 0.000 C.000	0.001 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000
	15 20 50	0.000 0.000 0.000	0.000 0.000 -0.000	0.000 0.000 0.000	0.000 0.000 0.003	0.000 0.000 -0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 C.COO	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000

		Į	

Chapitre 4

K	7	~~~	ちゅうしょうしょう	ひつつつつ	0-0-0-Q	00000	~~~~~		b/a	~	0-0-0-0-0	~~~~~~	~~~~~~	じょうようしょう	しょうしょう	~
		0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	8
-	0	0.000	INFINI	INF INI	INFINI	INFINI	INFINI	INFINI								
	0,2	0.000	0.008	6.027	0.055	0.067	0.083	0.104	0.131	0.152	0.161	0.167	0.170	0.174	0.177	0.177
	0,4	0.000	0.002	6.007	0.017	0.022	0.030	0.042	0.060	0.075	0.083	0.088	0.090	0.095	0.097	0.098
5000	0,5	C.CCO	0.001	0.004	0.011	0.014	0.020	0.029	0.043	0.056	C.063	0.067	0.070	0.074	0.076	0.077
	0,6	0.000	0.001	0.003	0.007	0.009	0.013	0.020	0.031	0.042	0.049	0.052	0.055	0.059	0.061	0.062
	0,8	0.COO	0.000	0.001	0.003	0.005	0.007	0.010	0.017	0.025	C.030	0.033	0.036	0.039	0.041	0.042
9	1	J.000	0.000	0.001	0.002	0.002	0.004	0.006	0.010	0.016	C.020	0.022	C.024	0.027	0.029	0.030
	1,2	D.000	0.000	0.000	0.001	0.001	0.002	0.003	0.006	0.010	0.013	0.016	C.017	0.020	0.022	0.022
	1,4	J.000	5.000	0.000	0.001	0.001	0.001	0.002	0.004	0.007	C.009	0.011	C.012	0.015	0.017	0.017
ZZ	1,5	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.003	0.006	C.008	0.009	0.011	C.013	0.015	0.015
	1,6	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.003	0.005	0.007	C.CO8	0.009	0.011	0.013	0.014
	1,8	0.000	6.000	0.000	J.000	0.005	0.001	0.001	0.002	0.003	C.005	C.OO6	C.007	C.009	0.010	0.011
-	2 2,5 3	0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000	0.000 0.00C 0.000	0.000 0.000 0.000	0.001 0.000 0.000	0.001 0.001 0.000	0.002 0.001 0.001	6.004 0.002 0.001	0.CO5 0.OO2 0.CO1	0.005 0.003 C.CO2	C.007 C.004 C.003	0.008 0.005 0.004	0.009 0.006 0.004
0000	4	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.002	0.002
	5	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002
	1 0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	C.COO	0.000	0.000	0.000	0.000
200	15 20 50	0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	6.000 0.000 3.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 C.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000

K	"		~~~	u so so a second	20000	しょうしょうしょう	DDDDDD	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~ ~	b/a	ø	ひつつつつ	00000	-D-D-D-D-Q	morada	7-0-0-0-0-	~
	<u> </u>		0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	8
	0	0 0,2 0,4	0.000 0.000 0.000	INFINI 0.036 0.016	INFIN1 0.069 0.031	INFINI 0.105 0.049	INFINI 0.120 0.058	INFINI 0.139 0.069	INFINI 0.164 0.085	INFINI 0.197 0.107	INFINI 0.223 0.127	INFINI 0.236 0.137	INF INI C.244 C.143	INF IN I C.248 C.147	INFINI 0.255 0.153	INFINI 0.258 0.157	INFINI 0.259 0.158
= *		),5 ),6 ),8	0.000 0.000 0.000	0.011 0.009 0.005	0.023 0.017 0.010	0.036 0.028 0.017	0.043 0.032 0.020	0.051 0.039 0.024	0.064 0.050 0.031	0.083 0.065 0.042	0.100 0.080 0.053	0.109 0.088 0.059	0.115 C.093 C.063	C.118 C.096 C.O66	0.124 C.102 C.071	0.127 0.105 0.074	0.128 0.106 0.075
c o i	5   1 1	1 1,2 1,4	0.000 0.000 0.000	0.003 0.002 0.002	0.007 0.004 0.003	0.011 0.007 0.005	0.013 0.009 0.006	0.016 0.011 0.007	0.020 0.014 0.010	0.028 0.019 0.014	0.036 0.025 0.018	0.041 0.030 0.022	0.045 0.033 0.024	0.047 0.035 0.026	0.052 0.039 0.030	0.054 0.041 0.032	0.055 0.042 0.033
= ⁷ /28	E/	,5 ,6 ,8	0.000 0.000 0.000	0.001 0.001 0.001	0.003 0.002 0.002	0.004 0.004 0.003	0.005 0.004 0.003	0.006 0.005 0.004	0.008 0.007 0.005	0.012 0.010 0.008	0.016 0.014 0.010	0.019 0.016 0.013	0.021 0.019 0.014	0.023 0.020 0.016	0.026 0.023 0.019	0.028 0.025 0.020	0.029 0.026 0.021
ñ	2	2 2,5 3	0.000 0.000 0.000	0.001 0.000 0.000	C.001 0.001 0.000	0.002 0.001 0.001	0.002 0.001 0.001	0.003 0.002 0.001	0.004 0.002 0.001	0.006 0.003 0.002	0.008 0.005 0.003	0.010 0.006 0.004	0.011 0.007 0.004	0.012 0.007 C.CO5	0.015 0.009 0.006	0.017 0.011 0.008	0.018 0.012 0.008
		4 5 1 0	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.001 0.000 0.000	0.001 0.000 0.000	0.001 0.001 0.000	0.002 0.001 0.000	0.002 0.001 0.000	0.002 0.001 0.000	0.003 0.002 0.000	0.004 0.003 0.000	0.005 0.003 0.001
		15 20 50	0.000	0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000

C	ND
	~

Section 4-1

12

L		000	-D-D-D-D-1	アリンク・ロ・ロ・ロ・	orororo	00000	-0-0-0-0-0		b/a	~	0-0-0-0-0	~D~D~D~D~D	191919191	ひっしょしょうしょう	6-0-0-0-0-	Ş
		0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	8
	0	0.000	0.159	0.159	0.159	0.159	0.159	0.159	0.159	0.159	0.159	0.159	C.159	0.159	0.159	0.159
	0,2	0.000	0.032	C.079	0.117	0.127	0.137	0.145	0.152	0.155	0.155	0.156	C.156	0.156	0.156	0.156
	0,4	0.000	0.009	C.032	0.064	0.079	0.095	0.115	0.133	0.142	0.145	0.146	C.147	0.148	0.148	0.148
	0,5 0,6 0,8	0.000	0.006 0.004 0.002	0.022 0.015 0.009	0.048 0.036 0.022	0.061 0.047 0.029	0.077 0.062 0.041	0.098 0.083 0.059	0.121 0.109 0.086	0.134 0.125 0.106	0.138 0.131 0.115	0.140 0.133 0.119	0.141 C.135 C.121	0.142 0.136 0.124	0.142 0.136 0.124	0.142 0.136 0.124
a	1	0.300	0.001	0.005	0.014	0.019	0.028	0.042	0.067	0.089	0.100	0.105	C.108	C.111	0.112	0.113
	1,2	0.000	0.001	0.004	0.009	0.013	0.019	0.030	0.051	0.073	0.085	0.092	C.095	O.10C	0.102	0.102
	1,4	0.000	0.001	0.002	C.007	C.009	0.014	0.022	0.040	0.060	0.073	0.080	C.084	C.090	0.092	0.093
2/2	1,5	0.000	0.001	C.002	0.006	0.008	0.012	0.019	0.035	0.054	0.067	0.075	0.079	0.086	0.088	0.088
	1,6	0.000	0.000	C.002	0.005	0.007	0.010	0.017	0.031	0.049	0.062	0.070	0.074	0.082	0.084	0.084
	1,8	0.000	0.000	C.C01	0.004	0.005	0.008	0.013	0.024	0.040	0.052	0.061	C.066	0.074	C.077	0.077
-	2	0.000	0.000	0.001	0.003	0.004	0.006	0.010	0.019	0.033	0.045	0.053	C.058	0.067	0.071	0.071
	2,5	0.000	0.000	0.001	0.001	0.002	0.003	0.006	0.011	0.021	0.030	0.037	0.043	0.054	0.058	0.059
	3	0.000	0.000	0.000	0.001	0.001	0.002	0.003	0.007	0.014	0.021	0.027	C.032	0.043	0.049	0.050
0000	4	0.000	0.000	C.000	0.000	0.001	0.001	0.002	0.003	0.007	C.011	0.015	C.019	C.029	0.037	0.039
	5	0.000	0.000	O.000	0.000	0.000	0.000	0.001	0.002	0.004	0.006	C.CO9	0.011	O.020	0.028	0.031
	10	0.000	0.000	C.COO	0.000	0.000	0.000	0.000	0.000	0.001	0.001	C.O01	C.002	O.004	0.010	0.016
	15	0.000	0.000	C.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.004	0.011
	20	0.000	0.000	C.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.008
	50	0.000	0.000	G.COO	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.003

ę.

	2		20	~~~~	~~~~~~	ちょうしょう	ひゅうゆん	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~ k	b/a	Ś	0-0-0-0-0-	00000	~~~~~	~~~~~~	~~~~~	~
			0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	ω
		0 0,2 0,4	0.000 0.000 0.000	U.250 0.010 0.002	0.250 0.045 0.010	0.250 0.094 0.032	0.250 J.112 0.J45	0.250 0.134 0.064	0.250 J.158 0.091	0.250 0.184 0.128	0.250 0.201 0.156	0.250 C.208 C.169	0.250 0.211 0.176	C.250 O.214 C.179	0.250 C.217 C.186	0.250 0.218 C.188	0.250 0.219 0.189
	2	0,5 0,6 0,8	0.000 0.000 0.000	0.001 0.000 0.000	0.006 0.003 0.001	0.020 0.013 0.006	0.029 0.019 0.009	0.044 0.031 0.016	0.068 0.051 0.029	0.105 0.086 0.057	0.136 0.118 0.087	0.151 0.134 0.106	0.159 C.144 C.117	C.164 C.149 C.124	0.172 0.158 0.135	0.175 0.163 C.141	0.176 0.164 0.143
coi	ב מ כ	1 1,2 1,4	0.000 0.000 0.000	0.000 0.000 0.000	0.001 0.000 0.000	0.003 0.002 0.001	0.005 0.003 0.072	0.009 0.005 0.003	0.017 0.011 0.007	0.037 U.025 0.017	0.064 0.047 0.035	0.083 0.065 0.051	0.095 0.077 C.062	C.103 0.085 0.071	0.116 0.100 0.087	0.123 0.108 0.095	0.125 0.111 0.099
= ⁷ / _{2a}	e/	1,5 1,6 1,8	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.001 0.001 0.000	0.001 0.001 0.001	0.003 0.002 0.001	0.005 0.004 0.003	0.014 0.012 0.008	0.030 0.026 0.020	0.045 C.040 0.031	0.056 0.051 0.041	C.064 0.059 0.049	0.081 C.076 C.066	0.090 0.085 C.077	0.094 0.089 0.081
J J	_	2 2,5 3	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.001 0.000 0.000	0.001 0.000 0.000	0.002 0.001 0.000	0.006 0.003 0.002	0.015 0.038 0.094	C.025 0.014 0.008	0.034 0.021 0.013	C.041 C.027 C.018	0.058 0.043 0.032	0.069 0.055 0.045	0.074 0.061 0.051
		4 5 1 0	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.001 0.000 0.000	0.002 0.001 0.000	0.003 0.002 0.000	0.006 0.003 0.000	C.CO8 0.004 C.COO	0.018 0.011 0.001	0.031 0.022 0.006	0.039 0.031 0.016
		15 20 50	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	6.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 C.COO	0.000 0.000 0.000	0.002 0.001 0.000	0.011 0.008 0.003

L		~~~	~~~~~~	~~~~~	orroro	~~~~~	xOxOxOxO		b/a	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ひつつつつ	むしつつ	-1000	20000	しゅうしょう	<b>₽</b> *
		0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	8
eren	0 0,2 0,4	0.000	INFINI 0.017 0.004	INFINI 0.051 0.014	INFINI 0.094 0.032	INFINI 0.111 0.040	INFINI 0.133 0.053	INF INI 0.158 0.070	INFINI 0.185 0.091	INF IN I 0.201 0.104	INF IN I 0.207 0.109	INF INI 0.209 0.112	INFINI C.210 O.113	INFINI 0.212 0.114	INFINI 0.212 0.114	INFINI 0.212 0.114
0000	0,5	0.000	0.002	0.008	0.020	0.026	0.035	0.048	0.065	0.078	0.082	0.085	0.086	0.087	0.087	0.087
	0,6	0.000	0.001	0.005	0.013	0.017	0.024	0.033	0.048	0.059	0.063	0.065	0.066	C.067	0.068	0.068
	0,8	0.000	0.001	0.002	0.006	0.008	0.011	J.017	0.026	0.034	0.038	0.040	0.041	0.042	0.042	0.042
E	1	0.000	0.000	0.001	0.003	0.004	0.006	0.009	0.015	0.021	0.024	0.025	0.026	0.027	0.028	0.028
	1,2	0.000	0.000	0.001	0.002	0.002	0.003	0.005	0.009	0.013	0.015	0.017	0.017	C.018	0.019	0.019
	1,4	0.000	0.000	0.000	0.001	0.001	0.002	0.003	0.005	0.008	0.010	0.011	C.012	0.013	0.013	0.013
Z 25	1,5	0.000	0.000	0.000	0.001	0.001	0.001	0:002	0.004	0.007	0.008	0.009	0.010	0.011	0.011	0.011
	1,6	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.003	0.005	C.007	C.008	0.008	0.009	0.010	0.010
	1,8	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.092	0.0J4	C.005	C.005	0.006	C.CO7	0.007	0.007
	2	0.000	0.000	0.030	0.000	0.000	0.000	0.001	0.001	0.002	0.003	0.004	C.004	0.005	0.005	0.005
	2,5	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	C.001	0.002	0.002	0.003	0.003	0.003
	3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	G.001	0.001	C.001	0.002	0.002	0.002
~~~~	4	0.000	0.000	C.000	0.000	0.00J	0.000	0.000	0.000	0.000	0.000	0.000	C.000	0.001	0.001	0.001
	5	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	G.000	0.000	0.000	0.000
	1 0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	C.COC	0.000	0.000	0.000
	15 20 50	0.000 0.000 0.000	-0.000 0.000 -0.000	0.000 000.0- 0.000	0.000 -0.000 -0.000	0.000 0.000 -0.000	0.000 0.000 -0.000	0.000 0.000 -0.000	0.000	0.000 0.000 -0.000	0.000 0.000 0.000	0.000 0.000 -C.000	C.000 C.000 C.COC	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000

	2	20	~~~~~	u dada ana ana ana ana ana ana ana ana an	たゆゆゆる	P. D. D. D. D.	ゆゆゆゆゆ	~~ K	b/a	¢.	0-0-0-0-0-	じゅうしょう	ゆゆゆゆの	and	こうしょうしょう	2
		0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	8
	0	0.000	0.016	0.031	0.051	0.061	0.074	0.094	0.125	0.156	0.176	0.189	0.199	0.219	0.234	0.250
	0,2	0.000	0.013	0.025	0.041	0.049	0.060	0.076	0.103	0.130	0.148	0.160	0.169	C.188	0.203	0.219
	0,4	0.000	0.010	0.020	0.032	0.039	0.047	0.061	0.083	0.106	0.122	C.133	C.141	0.159	0.174	0.189
n tre	0,5 0,6 0,8	0.000 0.000 0.000	J.009 0.0J8 0.006	0.017 0.015 0.012	0.J29 0.025 0.020	0.034 0.030 0.023	0.042 0.037 0.029	0.054 0.048 0.037	0.074 0.066 0.052	0.096 0.086 0.069	0.111 0.100 0.082	0.121 0.110 C.091	0.129 C.118 C.098	0.146 0.134 0.114	0.161 0.149 0.127	0.176 0.164 0.143
c o i c e n	1 1,2 1,4	0.000 0.000 0.000	0.005 0.004 0.003	C.009 C.007 D.C06	0.015 0.012 0.010	0.018 0.015 0.012	0.023 0.018 0.015	0.029 0.024 0.019	0.042 0.034 0.027	0.056 0.046 0.038	0.067 C.056 C.046	0.075 0.063 C.053	0.082 0.069 0.058	0.097 0.083 0.072	0.110 0.096 0.084	0.125 0.111 0.099
$= \frac{z}{2a}$	1,5	0.000	0.003	0.005	0.009	0.011	0.013	0.017	0.025	0.035	C.043	0.049	0.054	0.067	0.079	0.094
	1,6	0.000	0.002	0.005	C.008	0.010	0.012	0.016	0.023	0.032	0.039	0.045	0.050	0.062	0.074	0.089
	1,8	0.000	0.002	0.004	J.007	0.008	0.010	0.013	0.019	0.027	0.033	0.039	0.043	0.055	0.066	0.081
N	2,5	0.000	0.002	0.013	0.006	0.007	0.008	0.011	0.016	0.023	0.029	0.033	C.038	0.048	0.059	0.074
	2,5	0.000	0.001	0.002	0.004	0.005	0.006	0.007	0.011	0.016	0.020	0.024	C.027	C.036	0.047	0.061
	3	0.000	0.001	0.002	0.003	0.003	0.004	0.005	0.008	0.012	0.015	0.018	C.021	C.028	0.038	0.051
	4	0.000	0.000	0.001	0.002	0.002	0.002	0.003	0.005	0.007	0.009	0.011	0.013	0.018	0.026	0.039
	5	0.000	0.000	0.001	0.001	0.001	0.002	0.002	0.003	0.005	0.006	0.007	0.009	C.013	0.019	0.031
	1 0	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.002	C.002	0.002	C.004	C.CO7	0.016
	15	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	C.001	0.002	0.003	0.011
	20	0.000	0.000	0.000	0.000	0.000	6.000	0.000	0.000	0.000	0.000	0.000	C.001	0.001	0.002	0.008
	50	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	C.COC	0.000	0.000	0.003

L	3	2000	たいしゅつしゅうしゃ	きゅうしゅう	9000¢	~~~~	~~~~~~	~~	b⁄a	~	~~~~	n order and a second	とうしう	しょうようしょう	00000	∕ ∿ ⁿ
		0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	8
-	0	U.000	0.001	0.003	0.008	0.011	0.017	0.J27	0.047	0.071	0.088	0.100	0.109	0.128	0.143	0.159
	0,2	U.000	0.001	0.002	0.005	0.008	0.011	0.018	0.033	0.051	0.065	0.076	0.083	0.100	0.115	0.130
	0,4	0.000	0.000	0.001	0.004	0.005	0.007	0.012	0.023	0.037	0.048	0.057	0.063	0.079	0.093	0.108
- Coloredo	0,5	0.000	0.000	0.001	0.003	0.004	0.006	0.010	0.019	0.031	0.041	0.049	0.055	0.070	0.083	0.098
	0,6	0.000	0.000	0.001	0.002	0.003	0.005	0.008	0.016	0.026	C.036	C.043	0.048	0.062	0.075	0.090
	0,8	0.000	0.000	0.001	0.002	0.002	0.003	0.006	0.011	0.019	C.026	C.032	0.037	0.050	0.062	0.076
en C	1	0.000	0.000	0.000	0.001	0.001	0.002	0.004	0.008	0.014	0.020	0.025	0.029	0.040	0.052	0.066
	1,2	0.000	0.000	0.000	0.001	0.001	0.002	0.003	0.006	0.010	0.015	0.019	0.023	C.033	0.044	0.058
	1,4	0.000	0.000	0.000	0.001	0.001	0.001	0.002	0.004	0.008	0.012	0.015	0.018	C.027	0.037	0.051
2	1,5 1,6 1,8	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000	0.001 0.001 0.000	0.001 0.001 0.001	0.002 0.001 0.001	0.004 0.003 J.002	0.007 0.006 0.005	0.010 0.009 0.007	0.013 0.012 0.010	0.016 0.015 0.012	C.025 C.023 C.019	0.035 0.032 0.028	0.048 0.046 0.041
and the second	2	0.000	0.000	0.000	0.000	0.000	C.COO	0.001	0.002	0.004	0.006	0.008	C.010	0.016	0.025	0.038
	2,5	0.000	0.000	0.000	0.000	0.000	O.OOO	0.000	0.001	0.002	0.003	0.005	C.006	0.011	0.018	0.031
	3	0.000	0.000	0.000	0.000	0.000	O.OOO	0.000	0.001	0.001	0.002	0.003	O.004	0.008	0.014	0.026
	4	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.002	0.004	0.009	0.020
	5	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.003	0.006	0.016
	1 0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	C.000	0.001	0.008
0.00	15	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	C.000	0.000	0.000	0.005
	20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	O.000	C.000	0.000	0.004
	50	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	O.COC	C.COO	0.000	0.002

M		~~~		Si Di	アローローローロー	00000	00000	n K	b⁄a	ð	ひつゆしゅ	~~~~	NANNA	Sector Contraction	\$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	∿ *
	0	0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	8
200	0	0.000	0.25U	0.25U	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250
	0,2	0.000	0.109	0.160	0.180	0.183	0.186	0.187	0.188	0.188	0.188	0.188	0.188	0.188	0.188	0.188
	0,4	0.000	0.047	C.C83	0.111	0.118	0.126	0.131	0.134	0.134	0.135	0.135	0.135	C.135	0.135	0.135
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0,5	0.000	0.033	0.060	0.085	0.092	0.130	0.107	0.111	0.112	0.113	0.113	0.113	0.113	0.113	0.113
	0,6	0.000	0.023	0.044	0.065	0.072	0.079	0.087	0.092	0.093	0.094	0.094	0.094	0.094	0.094	0.094
	0,8	0.000	0.013	0.025	0.038	0.043	0.049	0.056	0.062	0.064	0.065	0.065	C.065	C.065	0.065	0.065
~ E	1	0.000	0.007	C.015	0.023	0.026	0.031	0.036	0.042	0.045	0.045	0.045	0.045	0.045	0.045	0.045
	1,2	0.000	0.005	C.CO9	0.014	0.017	0.020	0.024	0.029	0.031	0.032	0.032	0.032	0.032	0.032	0.032
	1,4	0.000	0.003	O.CO6	0.009	0.011	0.013	0.016	0.020	0.022	0.023	0.023	0.023	0.023	0.023	0.023
22	1,5	0.000	J.002	0.005	0.007	0.009	0.011	0.013	0.017	0.019	0.020	0.020	0.020	0.020	0.020	0.020
	1,6	0.000	0.002	0.004	0.006	0.007	0.009	0.011	0.014	0.016	0.017	0.017	0.017	0.017	0.017	0.017
	1,8	0.000	0.001	0.003	0.004	0.005	0.006	0.008	0.010	0.012	0.013	0.013	0.013	C.013	0.013	0.013
	2	0.000	0.001	0.002	0.003	0.003	0.004	0.005	0.007	0.009	0.010	0.010	0.010	0.010	0.010	0.010
	2,5	0.000	0.000	0.001	0.001	0.002	0.0J2	0.003	0.004	0.005	0.005	0.005	0.006	0.006	0.006	0.006
	3	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.002	0.003	0.003	0.003	0.003	0.003	0.003	0.003
200	4	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.001	0.002	0.002	0.002
	5	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.001	0.001
	1 0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	C.000	0.000	0.000	0.000	0.000
	15	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	C.000	0.000	0.000	0.000	0.000	0.000
	20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	C.000	C.COO	0.000	C.000	0.000	0.000
	50	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	C.000	C.CCC	0.000	C.000	0.000	0.000

Section 4-1



46

Chapitre 4



Section 4-1

0.159 0.078 0.030 -0.011 -0.012 -0.012 -0.003 000.0-0.015 -0.011 -0.006 8 0.015 0.004 -0.007 -0.011 -0.012 -0.012 -0.009 0.159 0.078 0.030 -0.011 -0.003 000.0-10 -0.011 -0.012 -0.012 -0.009 -0.006 -0.003 -0.000 0.015 -0.011 0.159 0.078 0.030 5 -0.011 -0.012 -0.012 -0.008 -0.006 -0.004 -0.002 -0.001 -0.000 0.015 -0.011 0.159 0.078 0.030 c -0.011 -0.011 -0.008 -0.006 -0.006 -0.000 -0.000 0.015 0.159 0.078 0.030 S N 0.015 -0.010 -0.010 -0.009 -0.007 -0.005 -0.004 -0.002 -0.001 -0.000 000.01 0.159 0.078 0.030 110.0-2 0.015 0.005 -0.006 -0.010 -0.011 0000-0-0.159 0.078 0.030 -0.009 -0.004 -0.004 100.0-1,5 3 -0.008 -0.007 -0.006 -0.005 -0.003 -0.002 -0.001 0000.0-0.159 0.078 0.030 0.016 0.006 -0.008 -0.009 -0.008 Q 0.017 0.007 -0.003 -0.006 -0.006 -0.005 -0.004 -0.002 -0.001 -0.001 -0.000 -0.000 -0.000 0.159 0.078 0.031 23 0.017 0.008 -0.002 -0.005 -0.003 -0.002 -0.001 0000.0-0.159 0.078 0.030 -0.004 -0.000 0,5 0.016 0.007 -0.001 0000.0--0.004 -0.004 -0.004 000.0-0.159 0.076 0.029 -0.004 -0.003 -0.003 -0.002 0,4 0.015 0.007 -0.001 -0.000 -0.003 -0.004 -0.003 0.159 0.075 0.027 -0.002 -0.001 0000-0-2 0.001 -0.0000--0.002 -0.002 -0.002 -0.002 -0.002 -0.001 000.0--0.001 0.159 0.065 0.021 0,2 000.0 0.159 0.043 0.012 0.003 0.001 0.001 0.001 0,1 0.000.0 0.000.0 0.000.0 0.000.0 0.000.0 0.000.0 0.000.0 0 0,6 0,8 0,2 0,4 1,2 2,5 3 5 10 15020 ₽⁄z = entre o ez/z = niop

GIROUD. - Tables pour le calcul des fondations. Tome 2

47

4-1

M	2	000	-D-D-D-D-A	70000	0-0-0-0-0-0-0-	00000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		b/a	~	00000	~~~~~	~~~~~~~	rest and a second second	91919-19194 1	0-
	۷	0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	ω
2000	0 0,2 0,4	0.000	0.250 0.026 0.002	0.250 0.040 0.003	0.250 0.046 0.002	0.250 0.046 0.001	0.250 0.046 -0.000	0.250 0.045 -0.002	0.250 0.043 -0.005	0.250 0.042 -0.007	0.250 0.042 -0.008	0.250 0.042 -0.008	0.250 0.042 -0.008	0.250 0.042 -0.008	0.250 0.042 -0.008	0.250 0.042 -0.008
0000	0,5 0,6 0,8	0.000 0.000 0.000	-0.001 -0.002 -0.002	-0.002 -0.004 -0.005	-0.005 -0.007 -0.007	-0.006 -0.009 -0.009	-0.008 -0.010 -0.010	-0.010 -0.013 -0.013	-0.013 -0.016 -0.016	-0.015 -0.018 -0.018	-0.016 -0.019 -0.019	-0.016 -0.019 -0.019	-0.016 -0.020 -0.019	-0.016 -0.020 -0.019	-0.016 -0.020 -0.019	-0.016 -0.020 -0.019
B	1 1,2 1,4	0.000 0.000 0.000	-0.002 -0.001 -0.001	-0.003 -0.002 -0.002	-0.006 -0.004 -0.003	-0.007 -0.005 -0.003	-0.008 -0.006 -0.004	-0.010 -0.007 -0.005	-0.013 -0.009 -0.007	-0.015 -0.011 -0.008	-0.015 -0.012 -0.009	-0.016 -0.012 -0.009	-0.016 -0.012 -0.009	-0.016 -0.013 -0.010	-0.016 -0.013 -0.010	-0.016 -0.013 -0.010
2/2	1,5 1,6 1,8	0.000 0.000 0.000	-0.001 -0.001 -0.000	-0.001 -0.001 -0.001	-0.002 -0.002 -0.001	-0.003 -0.002 -0.002	-0.003 -0.003 -0.002	-0.004 -0.004 -0.003	-0.006 -0.005 -0.004	-0.007 -0.006 -0.005	-0.008 -0.007 -0.005	-0.008 -0.007 -0.005	-0.008 -0.007 -0.006	-0.008 -0.007 -0.006	-0.009 -0.008 -0.006	-0.009 -0.008 -0.006
200	2 2,5 3	0.000	-0.000 -0.000 -0.000	-0.001 -0.000 -0.000	-0.001 -0.000 -0.000	-0.001 -0.001 -0.000	-0.002 -0.001 -0.000	-0.002 -0.001 -0.001	-0.003 -0.001 -0.001	-0.003 -0.002 -0.001	-0.004 -0.002 -0.001	-0.004 -0.002 -0.001	-0.004 -0.002 -0.001	-0.005 -0.003 -0.002	-0.005 -0.003 -0.002	-0.005 -0.003 -0.002
0000	4 5 10	0.000 0.000 0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.001 -0.000 -0.000	-0.001 -0.000 -0.000	-0.001 -0.000 -0.000	-0.001 -0.000 -0.000	-0.001 -0.000 -0.000
	15 20 50	0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000

t

M	0	~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ひゅうりょう	00000	00.000	ren an	sis I	b/a	~	~~~~	~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~	00000	¢
and the second second second	3	0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	8
	0	0.000	INFINI	INFINI	INFINI	INFINI	INFINI	INFINI	INFINI	INFINI	INFINI	INFINI	INFINI	INF INI	INFINI	INFINI
	0,2	0.000	0.013	0.017	0.012	0.008	0.002	-0.006	-0.015	-0.019	-0.020	-0.021	-0.021	-0.021	-0.021	-0.021
	0,4	0.000	-0.006	-0.012	-0.020	-0.024	-0.028	-0.035	-0.042	-0.046	-0.047	-0.047	-0.048	-0.048	-0.048	-0.048
tre	0,5	0.000	-0.006	-0.012	-0.019	-0.022	-0.026	-0.031	-0.037	-0.041	-0.042	-0.042	-0.043	-0.043	-0.043	-0.043
	0,6	0.000	-0.005	-0.010	-0.015	-0.018	-0.021	-0.026	-0.031	-0.034	-0.035	-0.036	-0.036	-0.036	-0.036	-0.036
	0,8	0.000	-0.003	-0.006	-0.009	-0.011	-0.013	-0.016	-0.020	-0.022	-0.023	-0.023	-0.023	-0.024	-0.024	-0.023
c en 1 c en 1	1 1,2 1,4	0.000 0.000 0.000	-0.002 -0.001 -0.001	-0.003 -0.002 -0.001	-0.005 -0.003 -0.002	-0.006 -0.004 -0.002	-0.008 -0.004 -0.003	-0.009 -0.006 -0.003	-0.012 -0.007 -0.004	-0.014 -0.009 -0.005	-0.014 -0.009 -0.006	-0.015 -0.009 -0.006	-0.015 -0.010 -0.006	-0.015 -0.010 -0.006	-0.015 -0.010 -0.006	-0.015 -0.010 -0.006
= 2a	1,5	0.000	-0.000	-0.001	-0.001	-0.002	-0.002	-0.003	-0.004	-0.004	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005
	1,6	0.000	-0.000	-0.001	-0.001	-0.001	-0.002	-0.002	-0.003	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004
	1,8	0.000	-0.000	-0.000	-0.001	-0.001	-0.001	-0.001	-0.002	-0.002	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003
3	2,5 2,5	0.000 0.000 0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.001 -0.000 -0.000	-0.001 -0.000 -0.000	-0.001 -0.000 -0.000	-0.001 -0.000 -0.000	-0.002 -0.001 -0.000	-0.002 -0.001 -0.000	-0.002 -0.001 -0.000	-0.002 -0.001 -0.000	-0.002 -0.001 -0.000	-0.002 -0.001 -0.000	-0.002 -0.001 -0.000
	4	0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000
	5	0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000
	10	0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	0.000
	15	0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	0.000
	20	0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	0.000
	50	0.000	-0.000	-0.000	-0.000	-0.000	0.000	0.000	0.000	-0.000	0.000	-0.000	0.000	0.000	0.000	0.000

M	2.	000	- O- O- O- O- O	~~~~~~	0-0-0-0-0-	00000	-0-0-0-0-0		b⁄a	¢.	00000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~~~	じつううう	<b>₽</b> ×
4	ŀ	0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	8
-	0 0,2 0,4	0.000	0.159 0.010 0.001	0.159 0.026 0.005	0.159 0.038 0.009	0.159 0.041 0.011	0.159 0.044 0.012	0.159 0.045 0.013	0.159 0.045 0.012	0.159 0.044 0.010	0.159 0.044 0.009	0.159 0.043 C.009	0.159 0.043 0.009	0.159 0.043 0.009	0.159 0.043 0.009	0.159 0.043 0.009
-	0,5 0,8 0.8	0.000	0.001	0.002	0.004 0.002 -0.000	0.005 0.002 -0.000	0.005 0.002 -0.001	0.006 0.002 -0.001	0.004 0.000 -0.003	0.003 -0.002 -0.005	0.002 -0.003 -0.007	0.001 -0.003 -0.007	0.001 -0.004 -0.008	0.001 -0.004 -0.008	0.001 -0.004 -0.008	0.001 -0.004 -0.008
	1 1,2 1,4	0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.001 -0.000 -0.000	-0.001 -0.001 -0.001	-0.001 -0.001 -0.001	-0.002 -0.002 -0.001	-0.004 -0.003 -0.003	-0.006 -0.005 -0.004	-0.007 -0.006 -0.005	-0.008 -0.007 -C.006	-0.008 -0.007 -0.006	-0.009 -0.008 -0.007	-0.009 -0.008 -0.007	-0.009 -0.008 -0.007
120	1,5 1,6 1,8	0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.001 -0.001 -0.000	-0.001 -0.001 -0.001	-0.002 -0.002 -0.002	-0.004 -0.003 -0.003	-0.005 -0.004 -0.004	-0.006 -0.005 -0.004	-0.006 -0.005 -0.005	-0.007 -0.006 -0.005	-0.007 -0.006 -0.006	-0.007 -0.006 -0.006
2 0000	2 2,5 3	0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.001 -0.000 -0.000	-0.001 -0.001 -0.000	-0.002 -0.001 -0.001	-0.003 -0.002 -0.001	-0.003 -0.002 -0.001	-0.004 -0.002 -0.002	-0.005 -0.003 -0.002	-0.005 -0.003 -0.002	-0.005 -0.003 -0.003
200	4 5 10	0.000 0.000 0.000	-0.000 -0.000 -0.000	-C.COU -0.000 -0.000	-0.000 -0.000 -0.000	-0.001 -0.000 -0.000	-0.001 -0.000 -0.000	-0.001 -0.001 -0.000	-0.001 -0.001 -0.000	-0.002 -0.001 -0.000						
	15 20 50	0.000 0.000 0.000	0.000 -0.000 0.000	-0.000 -0.000 -0.000	-0.000 0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000

M		20	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	かしうしょう	panana	~~~~~	~~~~~	sis l	b/a	~	~~~~~	~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	500000r	9-0-0-0-0-	¢
	5	0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	8
	0 0,2 0,4	0.000 0.000 0.000	INFINI 0.003 0.000	INFINI 0.015 0.001	INFINI 0.031 0.004	INFINI 0.036 0.006	INFINI 0.042 0.007	INFINI 0.046 0.008	INFINI 0.045 0.006	INFINI 0.040 0.002	INFINI 0.036 -0.002	INF IN I 0.034 -0.004	INFINI 0.032 -0.005	INFINI 0.030 -0.008	INFINI 0.029 -0.009	INFINI 0.028 -0.009
n tre	0,5 0,6 0,8	0.000 0.000 0.000	0.000 0.000 -0.000	0.001 0.000 -0.000	0.002 0.001 -0.000	0.002 0.001 -0.000	0.003 0.001 -0.000	0.003 0.000 -0.001	0.001 -0.002 -0.003	-0.004 -0.006 -0.006	-0.007 -0.009 -0.009	-0.009 -0.011 -0.010	-0.010 -0.012 -0.012	-0.013 -0.014 -0.014	-0.014 -0.015 -0.015	-0.014 -0.016 -0.015
coi cen	1 1,2 1,4	0.000 0.000 0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.001 -0.001 -0.000	-0.002 -0.002 -0.001	-0.005 -0.004 -0.003	-0.007 -0.005 -0.004	-0.009 -0.007 -0.005	-0.010 -0.008 -0.006	-0.012 -0.010 -0.008	-0.013 -0.011 -0.009	-0.013 -0.011 -0.009
$=\frac{z}{2a}$	1,5 1,6 1,8	0.000 0.000 0.000	-0.000 -0.000 -0.000	-C.COO -C.OOO -O.OOO	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.001 -0.001 -0.001	-0.002 -0.002 -0.001	-0.003 -0.003 -0.002	-0.004 -0.004 -0.003	-0.005 -0.005 -0.004	-0.007 -0.006 -0.005	-0.008 -0.007 -0.006	-0.008 -0.008 -0.006
2	2 2,5 3	0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.001 -0.000 -0.000	-0.002 -0.001 -0.000	-0.002 -0.001 -0.001	-0.003 -0.002 -0.001	-0.004 -0.003 -0.002	-0.005 -0.003 -0.002	-0.005 -0.004 -0.003
	4 5 1 0	0.000 0.000 0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.001 -0.000 -0.000	-0.001 -0.001 -0.000	-0.002 -0.001 -0.000
	15 20 50	0.000 0.000 0.000	-0.000 -0.000 -0.000	-0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000

M	7	000	-O-O-O-O-	~~~~~	000.00	dod adada d	~~~~~~		b⁄a	ø	9~9~9~9~9	and	~~~~~	505-05-05-05-05-05-05-05-05-05-05-05-05-	000000	<i>۵۰</i>
	2	0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	8
2000	0 0,2 0,4	0.000	0.161 0.026 0.007	0.115 0.037 0.012	0.077 0.036 0.015	0.063 0.033 0.015	0.048 0.028 0.015	0.031 0.021 0.012	0.015 0.011 0.008	0.006 0.005 0.004	0.003 0.002 0.002	0.002 0.001 0.001	0.001 0.001 0.001	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000
0000	0,5 0,6 0,8	0.000 0.000 0.000	0.004 0.003 0.001	0.008 0.005 0.002	0.010 0.007 0.003	0.010 0.007 0.004	0.010 0.008 0.004	0.009 0.007 0.004	0.006 0.005 0.003	0.003 0.003 0.002	0.002 0.002 0.001	0.001 0.001 0.001	0.001 0.001 0.001	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000
G	1 1,2 1,4	0.000 0.000 0.000	0.001 0.000 0.000	0.001 0.001 0.000	0.002 0.001 0.001	0.002 0.001 0.001	0.002 0.001 0.001	0.002 0.002 0.001	0.002 0.002 0.001	0.002 0.001 0.001	0.001 0.001 0.001	0.001 0.001 0.001	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000
27	1,5 1,6 1,8	0.000 0.000 0.000	0.000 0.000 0.000	0.000	0.000 0.000 0.000	0.001 0.000 0.000	0.001 0.001 0.000	0.001 0.001 0.000	0.001 0.001 0.001	0.001 0.001 0.001	0.001 0.001 0.000	0.000 0.000 0.000	C.000 C.000 C.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000
-	2 2,5 3	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 C.COO	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000
0000	4 5 1 0	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 C.000	C.000 0.000 C.000	0.000 C.000 C.COO	0.000 0.000 0.000	0.000 0.000 0.000
	15 20 50	0.000 0.000 0.000	0.000	0.000	0.000 0.000 0.000	0.000 0.000 -0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000	0.000 0.000 0.000	0.000 0.000 0.000	C.000 0.000 0.000	0.000 0.000 0.000	0.000	0.000 0.000 0.000

	4	7	00	~~~~~~~~	かつりつう	りょうりょう	~~~~~	~~~~~	sis l	b/a	~	ひゅうしゅつ	~~~~~	~~~~~	~~~~~~	じゅうしょう	0
	•	3	0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	ω
		0 0,2 0,4	0.000	0.080 0.094 -0.000	0.043 0.035 -0.001	0.017 0.001 -0.002	0.009 -0.001 -0.003	0.001 -0.003 -0.003	-0.006 -0.006 -0.004	-0.009 -0.007 -0.005	-0.007 -0.006 -0.004	-0.005 -0.004 -0.003	-0.003 -0.003 -0.003	-0.003 -0.002 -0.002	-0.001 -0.001 -0.001	-0.000 -0.000 -0.000	0.000 0.000 0.000
	tre	0,5 0,8 0,8	0.000 0.000 0.000	-0.001 -0.001 -0.000	-0.001 -0.001 -0.001	-0.002 -0.002 -0.001	-0.003 -0.002 -0.002	-0.003 -0.003 -0.002	-0.004 -0.003 -0.002	-0.004 -0.004 -0.003	-0.004 -0.003 -0.003	-0.003 -0.003 -0.002	-0.002 -0.002 -0.002	-0.002 -0.002 -0.001	-0.001 -0.001 -0.001	-0.000 -0.000 -0.000	0.000 0.000 0.000
coir	c en	1 1,2 1,4	0.000 0.000 0.000	-0.000 -0.000 -0.000	-0.001 -0.000 -0.000	-0.001 -0.001 -0.001	-0.001 -0.001 -0.001	-0.001 -0.001 -0.001	-0.002 -0.001 -0.001	-0.002 -0.002 -0.001.	-0.002 -0.002 -0.001	-0.002 -0.002 -0.001	-0.002 -0.001 -0.001	-0.001 -0.001 -0.001	-0.001 -0.001 -0.001	-0.000 -0.000 -0.000	0.000 0.000 0.000
= 7/28	= /a	1,5 1,6 1,8	0.000 0.000 0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.001 -0.000 -0.000	-0.001 -0.001 -0.000	-0.001 -0.001 -0.001	-0.001 -0.001 -0.001	-0.001 -0.001 -0.001	-0.001 -0.001 -0.001	-0.001 -0.001 -0.001	-0.001 -0.001 -6.001	-0.001 -0.001 -0.000	-0.000 -0.000 -0.000	0.000 0.000 0.000
2	-	2 2,5 3	0.000 0.000 0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.001 -0.000 -0.000	-0.001 -0.000 -0.000	-0.001 -0.000 -0.000	-0.001 -0.000 -0.000	-0.001 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	0.000 0.000 0.000
		4 5 1 0	0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -6.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000	-0.000 -0.000 -0.000	-C.000 -C.000 -C.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	0.000 0.000 0.000
		15 20 50	0.000 0.000 0.000	-0.000 -3.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.030 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	0.000 0.000 0.000



4-1

Chapitre 4

			1000000	NO ON		0.000		~	5/a	Ŷ	NO VOIL	0.0.0.0				à
	4	0	0,1	0,2	√_	0,4	0,5	2/3	-	1,5	2	2,5	۳	2	10	8
000	0,2 0,4	0 000 0	INFINI 0.004 0.000	INFINI 6.010 0.001	INFINI 0.017 0.002	INFINI 0.019 0.032	INFINI 0.020 0.002	INFINI 0.020 0.001	INFINI 0.018 -0.001	INFINI 0.014 -0.004	INFINI 0.011 -0.007	INFINI 0.010 -0.008	INFINI C.009 -0.009	INFINI 0.007 -0.010	INFINI 0.007 -0.011	INFINI 0.006 -0.011
and	0 , 8 8 8	0.000.0 0.000.0 0.000	0.000	0.000.01	0.000-0	0.000 -0.000 -0.001	-0.000 -0.001 -0.001	-0.001 -0.002 -0.001	-0.003 -0.003 -0.003	-0.006 -0.006 -0.005	-0.008 -0.008 -0.006	-0.009 -0.009 -0.007	-0.010 -0.009 -0.008	-0.011 -0.011 -0.009	-0.012 -0.011 -0.009	-0.012 -0.012 -0.010
~~ 6	1 1,2 1,4	0.000	-0.000	-0.000	-0.000	-0.000	-0.001 -0.000 -0.000	-0.001 -0.001 -0.001	-0.002 -0.001 -0.001	-0.004 -0.003 -0.002	-0.005 -0.003 -0.002	-0.005 -0.004 -0.003	-0.006 -0.005 -0.003	-0.007 -0.005 -0.004	-0.008 -0.006 -0.005	-0.008 -0.006 -0.005
? <i>\</i> 7	<u>۔</u> تو قو	0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000	-0.000 -0.000 -0.000	-0.000	-0.001 -0.001 -0.001	-0.002 -0.001 -0.001	-0.002 -0.002 -0.001	-0.003 -0.002 -0.002	-0.003 -0.003 -0.002	-0.004 -0.003 -0.003	-0.004 -0.004 -0.003	-0.005 -0.004 -0.003
2 0.00	2 2,5 3	0.000 0.000 0.000	-0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000	-0.000	-0.000	-0.000 -0.000 -0.000	0000-0-	-0.001 -0.000 -0.000	-0.001 -0.001 -0.000	-0.001 -0.001 -0.000	-C.002 -0.001 -0.001	-0.002 -0.001 -0.001	-0.003 -0.002 -0.001	-0.003 -0.002 -0.001
~~~~	4 ²	0.000 0.000 0.000	-0.000 -0.000 -0.000	0.000.00	-0.000	-0.000 -0.000	-0.000	-0.000	-0.000	0000-0-	0000*0-	-0°000 -0°000 -0°000	-0.000	-0.000	-0.001 -0.000 -0.000	-0.001 -0.001
n dradinger	15 20 50	0000	-0.000 -0.000 -0.000	0000.0	-0.000	0.000	0000	0000.0-	0000.0-	-0.000	000.01	000.01	0000.00	0000-0	000.0-	-0•000 -0•000 -0•000

0	+	-
ł	2	•
	ż	

M	7	20	~~~~~~~~~~	900000	00000	00000		sino l	b/a	~	~~~~	~~~~~		\$~ \$~\$~\$~ \$~\$~	0-0-0-0-0-	0
	5	0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	8
	0 0,2 0,4	0.000	INFINI 0.016 0.002	INFINI 0.028 0.004	INFINI 0.038 0.006	INFINI 0.041 0.006	INFINI 0.044 0.006	INFINI 0.045 0.006	INFINI 0.043 0.003	INF1N1 0.038 -0.000	INFINI 0.035 -0.003	INFINI 0.033 -0.005	INFINI 0.032 -0.006	INFINI 0.030 -0.008	INFINI 0.029 -0.009	INFINI 0.028 -0.009
r e	0,5	0.000	0.001	0.001	0.001	0.001	0.001	0.000	-0.002	-0.006	-0.008	-0.010	-0.011	-0.013	-0.014	-0.014
	0,6	0.000	-0.000	-0.000	-0.001	-0.001	-0.002	-0.003	-0.005	-0.008	-0.010	-0.012	-0.013	-0.014	-0.015	-0.016
	0,8	0.000	-0.001	-0.001	-0.002	-0.002	-0.003	-0.004	-0.006	-0.009	-0.010	-0.012	-0.012	-0.014	-0.015	-0.015
c o i r c en t	1 1,2 1,4	0.000 0.000 0.000	-0.001 -0.000 -0.000	-0.001 -0.001 -0.001	-0.002 -0.002 -0.001	-0.002 -0.002 -0.001	-0.003 -0.002 -0.002	-0.004 -0.003 -0.002	-0.005 -0.004 -0.003	-0.007 -0.006 -0.005	-0.009 -0.007 -0.006	-0.010 -0.008 -0.006	-0.011 -0.009 -0.007	-0.012 -0.010 -0.008	-0.013 -0.011 -0.009	-0.013 -0.011 -0.009
= ^z / _{2a}	1,5	0.000	-0.000	-0.001	-0.001	-0.001	-0.002	-0.002	-0.003	-0.004	-0.005	-0.006	-0.006	-0.007	-0.008	-0.008
	1,6	0.000	-0.000	-0.001	-0.001	-0.001	-0.001	-0.002	-0.003	-0.004	-0.004	-0.005	-0.006	-0.007	-0.007	-0.008
	1,8	0.000	-0.000	-0.000	-0.001	-0.001	-0.001	-0.001	-0.002	-0.003	-0.004	-0.004	-0.005	-0.005	-0.006	-0.006
2	2	0.000	-0.000	-0.000	-0.001	-0.001	-0.001	-0.001	-0.002	-0.002	-0.003	-0.003	-0.004	-0.004	-0.005	-0.005
	2,5	0.000	-0.000	-0.000	-0.000	-0.000	-0.001	-0.001	-0.001	-0.001	-0.002	-0.002	-0.002	-0.003	-0.003	-0.004
	3	0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.001	-0.001	-0.001	-0.001	-0.002	-0.002	-0.002	-0.003
	4	0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.001	-0.001	-0.001	-0.001	-0.001	-0.002
	5	0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.001	-0.001	-0.001
	10	0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000
	15	0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000
	20	0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000
	50	0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000

4-1

N.		000	rovorordra	94444	00000	00000	annan		b⁄a	Ø	<u>~~~~</u>	うしうしょう	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~	しゅうしゅん	0
I		0	0,1	0,2	1/3	0,4	0,5	² / ₃	1	1,5	2	2,5	3	5	10	8
	0 0,2 0,4	0.000	0.159 0.025 0.016	0.159 0.061 0.019	0.159 0.087 0.037	0.159 0.093 0.044	0.159 J.098 0.052	0.159 0.102 0.060	0.159 0.104 0.065	0.159 0.105 0.067	0.159 0.105 0.068	0.159 0.105 0.068	0.159 0.105 0.068	0.159 0.105 0.068	0.159 0.105 0.068	0.159 0.105 0.068
	0,5 0,6 0.8	0.000	0.003 0.002 0.001	0.011 0.007 0.003	0.024 0.016 0.007	0.030 0.020 0.010	0.037 0.026 0.013	0.045 0.033 0.018	0.051 0.040 0.024	0.054 0.043 0.027	0.054 0.043 0.028	0.054 0.044 0.029	0.054 0.044 0.029	0.054 0.044 C.029	0.054 0.044 0.029	0.054 0.044 0.029
and the	1 1,2	0.000	0.000	C.CO1 C.CJ1 C.CO0	0.004 0.002 0.001	0.005 0.003 0.001	0.007 0.004 0.002	0.010 0.006 0.003	0.015 0.009 0.006	0.018 0.012 0.008	0.019 0.013 0.009	0.019 0.013 0.009	0.019 0.013 0.009	C.019 0.013 C.009	0.019 0.013 0.009	0.019 0.013 0.010
20	1,5 1,6 1.8	0.000	0.000	C.000 C.C00 C.000	0.001 0.001 0.000	0.001 0.001 0.001	0.002 0.001 0.001	0.003 0.002 0.001	0.005 0.004 0.002	0.006 0.005 0.004	0.007 0.006 0.004	0.008 0.007 0.005	0.008 0.007 C.005	0.008 0.007 C.CO5	0.008 0.007 0.005	0.008 0.007 0.005
	2 2,5 3	0.000	0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.001 0.000 0.000	0.001 0.000 0.000	0.002 0.001 0.000	0.003 0.001 0.001	0.003 0.002 0.001	0.004 0.002 0.001	C.CO4 0.002 0.001	0.004 0.002 C.C01	0.004 0.002 0.001	0.004 0.002 0.001
222	4 5 1 0	0.000.0 0.000.0 0.000.0	0.000 0.000 -0.000	0.000 0.000 -0.000	0.000 0.000 -0.000	0.000 0.000 0.000	0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	C.000 0.000 C.COO	0.001 0.000 0.000	0.001 0.000 0.000	0.001 0.000 0.000
	15 20 50	0.000 6.000 0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	0.000 -0.000 -0.000	0.000 -0.000 -0.000	0.000 -0.000 -0.000	0.000	0.000 0.000 -0.000	0.000 0.000 -0.000	0.000 0.000 -0.000

tion
101
0
5

N.	,	000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	rononon	000.00	00000	~~~~~~		b⁄a	0	~~~~	19-19-19-19-19	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	500-0-0-0-0-	しょうしょう	¢.
	-	0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	8
	0	0.000	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250
	0,2	0.000	0.008	0.034	0.067	0.078	0.090	0.101	0.110	0.114	0.114	0.115	0.115	0.115	0.115	0.115
	0,4	0.000	0.001	0.006	0.018	0.024	0.033	0.044	0.056	0.061	0.062	0.063	0.063	0.063	0.063	0.063
-	0,5	0.000	0.000	0.003	0.010	0.014	0.020	0.029	0.040	0.045	0.047	0.048	0.048	0.048	0.048	0.048
	0,6	0.000	0.000	0.002	0.006	0.008	0.013	0.019	0.028	0.034	0.036	0.036	0.037	0.037	0.037	0.037
	0,8	0.000	0.000	0.000	0.002	0.003	0.005	0.009	0.015	0.019	0.021	0.022	0.022	0.023	0.023	0.023
B	1	0.000	0.000	0.000	0.001	0.001	0.002	0.004	0.008	0.011	0.013	0.014	0.014	0.015	0.015	0.015
	1,2	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.004	0.007	0.008	0.009	0.009	0.010	0.010	0.010
	1,4	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.004	0.005	0.006	0.006	0.007	0.007	0.007
N N	1,5 1,6 1,8	0.000 0.000 0.000	0.000 0.000 0.000	0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.001 0.001 0.000	0.002 0.001 0.001	0.003 0.003 0.002	0.004 0.004 0.002	0.005 0.004 0.003	0.005 0.004 0.003	0.006 0.005 0.004	0.006 0.005 0.004	0.006 0.005 0.004
200	2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.002	0.002	0.003	0.003	0.003
	2,5	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.001	0.002
	3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.001
1	4	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	C.000	0.000	0.000	0.000
	5	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	10	0.000	0.000	0.000	0.000	-0.000	0.000	0.000	0.000	0.000	0.000	0.000	C.000	0.000	0.000	0.000
200	15 20 50	0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	-0.000 0.000 0.000	0.000 0.000 -0.000	-0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 -0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000	0.000 0.000 0.000

-a

2	•	S. S. S.	0000	100 C	1000 M	0000	1000	3	6/a	Ş	00000		SADA	00000	0.000	ð
ی ا		0	0,1	0,2	~~	0,4	0,5	2/3	-	1,5	2	2,5	m	2	10	8
000	0,2 0,4	0.000	INFINI 0.000	INFINI 0.016 0.001	INFINI 0.023 0.000	INFINI 0.024 -0.001	INF INI 0.023 -0.002	INFINI 0.020 -0.006	INFINI 0.013 -0.011	INFINI 0.007 -0.016	INFINI 0.005 -0.019	INFINI 0.004 -0.020	INFINI 0.003 -0.020	INFINI 0.002 -0.021	INFINI 0.002 -0.021	INF INI 0.002 -0.021
	0,5 0,5 8,0	0.000	000.000	-0.001 -0.001	-0.002 -0.002 -0.001	-0.003 -0.003 -0.002	-0.004 -0.004 -0.003	-0.007 -0.007 -0.005	-0.012 -0.011 -0.008	-0.017 -0.015 -0.011	-0.019 -0.017 -0.013	-0.020 -0.018 -0.014	-0.021 -0.019 -0.014	-0.021 -0.019 -0.015	-0.021 -0.020 -0.015	-0.021 -0.020 -0.015
~~ 6	1 1,2 1,4	0.000	000.000	0000-0-	-0.001 -0.001 -0.000	-0.001 -0.001 -0.000	-0.002 -0.001 -0.001	-0.003 -0.002 -0.001	-0.005 -0.003 -0.002	-0.008 -0.005 -0.003	-0.009 -0.006 -0.004	-0.010	-0.010 -0.007 -0.005	-0.011 -0.008 -0.006	-0.011 -0.008 -0.006	-0.011 -0.008 -0.006
? <i></i> 7/ _Z	1. 6,5 8,6	0.000	000.01	0000.01	0000-0-	-0•000 -0•000 -0-000	-0.001 -0.000 -0.000	-0.001 -0.001 -0.000	-0.002 -0.001 -0.001	-0.003 -0.002 -0.002	-0.004 -0.003 -0.002	-0.004 -0.003 -0.002	-0.004 -0.004 -0.003	-0.005 -0.004 -0.003	-0.005 -0.004 -0.003	-0.005 -0.004 -0.003
e ororo	2 2,5 3	0000.0	000.01	0000-0-	0000-0-	-0°000 -0°000 -0°000	-0°000 -0°000 -0°000	000.0-	-0.000	-0.001 -0.000	-0.002 -0.001 -0.000	-0.002 -0.001 -0.000	-0.002 -0.001 -0.001	-0.002 -0.001 -0.001	-0.002 -0.001 -0.001	-0.003 -0.001 -0.001
~~~~	4 ° C	0.000	000.001	-0°000 -0°000 -0°000	-0.000	-0.000	-0°000 -0°000 -0°000	000.01	0000-0-	0000-0-	-0°000 -0°000 -0-	0000.01	000 • 0 - 0	-0.000	000°0- -0°00°0-	-0.000 -0.000 -0-
~~~~	15 20 50	0.000	0.000	0.000	-0•000 -0•000	0.000 0.000 -0.000	-0°000 -0°000	0000-0-	00000-0-	000°0- 000°0-	-0.000	0000.0	-0.000	-0.000	-0°000 -0°000 -0-	0000-0-

Chapitre 4

D
0
ct
μ.
0
ロ
F
T

N'	,	200	nananana	9-0-0-0-0-	~~~~~~	~~~~~	nnnn		5/a	~	~~~~	~~~~~~	200000	20000	overe	~
		0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	ω
	0	0.000	0.089	0.135	0.173	0.187	0.202	0.219	0.235	0.244	0.247	0.248	0.249	U.250	0.250	0.250
	0,2	0.000	0.022	0.042	0.062	0.070	0.079	0.091	0.103	0.110	0.112	0.113	0.114	0.115	0.115	0.115
	0,4	0.000	0.009	0.018	0.028	0.033	0.038	0.045	0.054	0.059	0.061	0.062	0.063	0.063	0.063	0.063
	0,5	0.000	0.006	0.013	0.020	0.023	0.027	0.033	0.040	0.044	0.046	0.047	0.047	0.048	0.048	0.048
	0,6	0.000	0.005	0.009	0.014	0.017	0.020	0.024	0.029	0.033	0.035	0.036	0.036	0.037	0.037	0.037
	0,8	0.000	0.002	0.005	0.008	0.009	0.011	0.013	0.017	0.020	0.021	0.022	0.022	0.023	0.023	0.023
9	1	0.000	0.001	0.003	0.004	0.005	0.006	0.008	0.010	0.012	0.013	0.014	0.014	0.015	0.015	0.015
	1,2	0.000	0.001	0.002	C.003	0.003	0.004	0.005	0.006	0.008	0.009	0.009	0.009	0.010	0.010	0.010
	1,4	0.000	0.000	0.001	0.002	0.002	0.002	0.003	0.004	0.005	0.006	0.006	0.006	0.007	0.007	0.007
NN	1,5	0.000	0.000	0.001	0.001	0.002	0.002	0.002	0.003	0.004	0.005	0.005	0.005	0.0C6	0.006	0.006
	1,6	0.000	0.000	0.001	0.001	0.001	0.001	0.002	0.003	0.003	0.004	0.004	0.004	0.005	0.005	0.005
	1,8	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.002	0.002	0.003	0.003	0.003	0.004	0.004	0.004
222	2	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.002	0.002	0.002	0.002	0.003	0.003	0.003
	2,5	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.002
	3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.001	0.001
	4	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	5	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	10	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
- Charles	15	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	C.000	0.000	C.COO	0.000	0.000	-0.000
	20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-0.000
	50	0.000	0.000	0.000	0.000	0.000	0.000	-0.000	0.000	0.000	-0.000	0.000	0.000	0.000	0.000	-0.000

Z			2000 C			0000	~~~~		5/a	ě	2000 C	0.000	50000			ð
ກ		0	0,1	0,2	7	0,4	0,5	2/3	-	1,5	2	2,5	е	2	10	8
200	0 0,2 0,4	0000.0	0.029 0.002 0.001	0.054 0.007 0.002	0.081 0.016 0.005	0.091 0.020 0.007	0.105 0.026 0.010	0.121 0.035 0.014	0.140 0.046 0.020	0.151 0.053 0.025	0.155 0.056 0.027	0.157 0.058 0.028	0.058 0.058 0.029	0.159 0.059 0.029	0.159 0.059 0.030	0.159 0.059 0.030
	0,5 ,6 ,8 ,9 ,9 ,9 ,9 ,9 ,9 ,9 ,9 ,9 ,9 ,9 ,9 ,9	00000	0.000	0.001	0.003 0.002 0.001	0.004 0.003 0.001	0.006 0.004 0.002	0.009 0.006 0.003	0.014 0.009 0.005	0.017 0.012 0.007	0.019 0.014 0.008	0.020 0.015 0.008	0.021 0.015 0.009	0.022 0.016 0.009	0.022 0.016 0.010	0.022 0.016 0.010
~~ E	1,2 1,4	0000.00	0.000	0.000	0.000	0.001	0.001	0.001	0.002 0.001 0.001	0.004 0.002 0.001	0.005 0.003 0.002	0.005 0.003 0.002	0.005 0.003 0.002	0.006 0.004 0.003	0.006 0.004 0.003	0.006 0.004 0.003
??/ _Z	 5,9,6,	0000	0.000	0.000	0.000 0.000 0.000	0.000	0.000	0.000	0.000	0.001 0.001 0.001	0.001 0.001 0.001	0.002 0.001 0.001	6.002 0.001 0.001	0.002 0.002 0.001	0.002 0.002 0.001	0.002 0.002 0.001
0.0.0	2 2,5 3	0000.0	0.000 0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000	0.001	0.001 0.001 0.000
~~~~	4 °°C	0.000	0.000 0.000 -0.000	0.000	0.000	0.000	0000.0	00000	0.000	0000*0	0.000	0.000	0.000	0.000 0.000 0.000	0.000	0.000
-0-0-0-	15 20 50	0.000	-0.000	0000 • 000 • 0 - 0 - 0 - 0 - 0 - 0 - 0 -	0.000 -0-000	0000.0	0000-0-	0000.0-	0000-0-	0000-0-	0000.0	0.000.0	0.000	0.000	0.000	-0.000 -0.000 -0.000

Chapitre 4

Σρ		$b_a$ $b_a$														
		0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	8
coin centre	0 0,2 0,4	0.000 0.000 0.000	0.500 0.145 0.072	0.500 0.244 0.136	0.500 0.318 0.203	0.500 0.340 0.228	0.500 0.364 0.258	0.500 0.388 0.293	0.500 0.411 0.331	0.500 0.424 0.354	0.500 0.430 0.364	0.500 0.432 0.369	0.500 0.434 0.372	0.500 0.436 0.376	0.500 0.437 0.378	0.500 0.437 0.379
	0,5 0,6 0,8	0.000 0.000 0.000	0.056 0.045 0.031	0.108 0.087 0.061	0.165 0.137 0.097	0.189 0.158 0.114	0.218 0.185 0.136	0.254 0.220 0.167	0.295 0.263 0.209	0.323 0.293 0.242	0.334 0.307 0.258	0.340 0.314 0.267	0.344 0.318 0.272	0.349 0.324 0.280	0.352 0.327 0.284	0.352 0.328 0.285
	1 1,2 1,4	0.000 0.000 0.000	0.022 0.017 0.013	0.044 0.034 0.026	0.072 0.055 0.043	0.085 0.065 0.051	0.102 0.079 0.063	0.128 0.101 0.080	0.167 0.134 0.110	0.200 0.167 0.140	0.218 0.185 0.158	0.228 0.196 0.169	0.234 0.203 C.177	0.244 0.214 0.189	0.248 0.219 0.195	0.250 0.221 0.197
$=$ $\frac{z}{2a}$ $=$ $\frac{z}{a}$	1,5 1,6 1,8	0.000	0.012 0.011 0.009	0.023 0.021 0.017	0.038 0.034 0.028	0.046 0.041 0.034	0.056 0.051 0.041	0.072 0.065 0.054	0.100 0.091 0.076	0.128 0.118 0.101	0.146 0.136 0.118	0.158 0.147 0.129	0.165 0.155 0.137	C.178 O.168 O.151	0.185 0.175 0.159	0.187 0.178 0.161
J.	2 2,5 3	0.000 0.000 0.000	0.007 0.005 0.003	C.014 O.009 O.007	0.023 0.016 0.011	0.028 0.019 0.013	0.035 0.023 0.017	0.045 0.031 0.022	0.064 0.044 0.032	0.086 0.061 0.045	0.102 0.075 0.056	0.114 0.085 0.065	0.121 0.092 0.072	0.136 0.108 0.087	0.145 0.117 0.098	0.148 0.121 0.102
	4 5 1 0	0.000	0.002 0.001 0.000	0.004 0.002 0.001	0.006 0.004 0.001	0.008 0.005 0.001	0.010 0.006 0.002	0.013 0.008 0.002	0.019 0.012 0.003	0.027 0.018 0.005	0.035 0.023 0.006	0.041 0.028 0.008	C.046 0.032 0.009	C.061 0.044 C.014	0.072 0.056 0.022	0.078 0.063 0.032
	15 20 50	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.001 0.000 0.000	0.001 0.000 0.000	0.001 0.001 0.000	0.001 0.001 0.000	0.002 0.001 0.000	0.003 0.002 0.000	0.003 0.002 0.000	0.004 0.002 0.000	0.007 0.004 0.001	0.012 0.007 0.001	0.021 0.016 0.006
Σ	-	000	~~~~~	~~~~~~	1-0-0-0-¢-	0-0-0-0-0-	00000	⊳~ K	b/a	Ś	00000	00000	~~~~~~~	~~~~~~	60000	0"
-----	-------------------	-------------------------	-------------------------	-------------------------	-------------------------	-------------------------	-------------------------	--------------------------	-------------------------	-------------------------	--------------------------	-------------------------	-------------------------	-------------------------	-------------------------	-------------------------
(	2	0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	8
222	0 0,2 0,4	0.000 0.000 0.000	0.500 0.096 0.033	0.500 0.156 0.061	0.500 0.195 0.087	0.500 0.205 0.096	0.500 0.215 0.106	0.500 0.222 0.115	0.500 0.227 0.123	0.500 0.229 0.126	0.500 0.230 0.126	0.500 0.230 0.126	0.500 0.230 0.127	0.500 0.230 0.127	0.500 0.230 0.127	0.500 0.230 0.127
	0,5 0,6 0,8	0.000 0.000 0.000	0.021 0.014 0.007	0.040 0.028 0.014	0.060 0.042 0.022	0.067 0.048 0.025	0.075 0.054 0.029	0.084 0.062 0.035	0.092 0.069 0.041	0.095 0.073 0.044	0.096 0.074 0.045	0.096 0.074 0.045	0.096 0.074 0.045	0.096 0.074 0.046	0.096 0.074 0.046	0.096 0.074 0.046
K	1 1,2 1,4	0.000 0.000 0.000	0.004 0.002 0.001	0.008 0.004 0.003	0.012 0.007 0.004	0.014 0.008 0.005	0.017 0.010 0.006	0.020 0.012 0.008	0.025 0.016 0.010	0.028 0.018 0.012	0.029 0.019 0.013	0.029 0.019 0.013	0.029 0.019 0.013	0.029 0.020 0.014	0.029 0.020 0.014	0.029 0.020 0.014
22	1,5 1,6 1,8	0.000	0.001 0.001 0.001	0.002 0.002 0.001	0.003 0.003 0.002	0.004 0.003 0.002	0.005 0.004 0.003	0.006 0.005 0.003	0.008 0.007 0.005	0.010 0.008 0.006	0.011 0.009 0.007	0.011 0.009 0.007	0.011 0.010 0.007	0.012 0.010 0.007	0.012 0.010 0.007	0.012 0.010 0.007
7	2 2,5 3	0.000	0.000	0.001 0.000 0.000	0.001 0.001 0.000	0.002 0.001 0.000	0.002 0.001 0.000	0.002 0.001 0.001	0.003 0.002 0.001	0.004 0.002 0.001	0.005 0.002 0.001	0.005 0.003 0.001	0.005 0.003 0.002	0.005 0.003 0.002	0.006 0.003 0.002	0.006 0.003 0.002
	4 5 10	0.000 0.000 0.000	0.000	0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.001 0.000 0.000	C.001 0.000 0.000	0.001 0.000 0.000	0.001 0.000 0.000	0.001 0.000 0.000
	15 20 50	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 -0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 -0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000

GIROUD. - Tables pour le calcul des fondations. Tome 2

6

1

	Σ,	ſ.	00	~~~~~~~	アロ・ロ・ロ・ロ・	ひつしゅう	00000	and and and a		b/a	~	borood	~~~~			00000	~
		)	0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	8
		0 0,2 0,4	0.000 0.000 0.000	INFINI 0.122 0.049	INFINI 0.219 0.094	INFINI 0.306 0.144	INFINI 0.338 0.165	INFINI 0.374 0.191	INFINI 0.415 0.222	INF INI 0.460 0.260	INFINI 0.488 0.286	INFINI 0.500 0.298	INF IN I 0.507 0.303	INF INI 0.510 0.307	INFINI 0.515 0.312	INFINI 0.518 0.314	INFINI 0.519 0.315
_	tre	0,5 0,6 0,8	0.000 0.000 0.000	0.035 0.026 0.015	0.068 0.050 0.029	0.105 0.079 0.047	0.122 0.092 0.055	0.143 0.109 0.067	0.170 0.132 0.082	0.203 0.161 0.105	0.228 0.184 0.124	0.239 0.194 0.133	0.244 0.200 0.139	0.248 0.203 0.142	0.253 0.208 0.147	0.255 0.211 0.149	0.256 0.212 0.150
c o i	C B D	1 1,2 1,4	0.000 0.000 0.000	0.009 0.006 0.004	0.018 0.012 0.008	0.030 0.020 0.014	0.035 0.024 0.016	0.043 0.029 0.020	0.054 0.037 0.026	0.071 0.050 0.036	0.086 0.062 0.046	0.095 0.069 0.052	0.099 0.074 0.056	0.102 0.076 0.058	0.107 0.081 0.063	0.110 0.083 0.065	0.110 0.084 0.066
= 2/28	= 2	1,5 1,6 1,8	0.000	0.004 0.003 0.002	0.007 0.006 0.004	0.012 0.010 0.007	0.014 0.012 0.009	0.017 0.015 0.011	0.022 0.019 0.014	0.030 0.026 0.020	0.039 0.034 0.026	0.045 C.040 0.031	0.049 0.043 0.034	0.051 0.045 0.036	0.056 0.050 0.040	0.058 0.052 0.042	0.059 0.052 0.043
>	J	2 2,5 3	0.000 0.000 0.000	0.002 0.001 0.001	0.003 0.002 0.001	0.006 0.003 0.002	0.007 0.004 0.002	0.008 0.004 0.003	0.011 0.006 0.004	0.015 0.008 0.005	0.021 0.012 0.007	0.024 0.014 0.009	0.027 0.016 0.011	0.029 C.018 C.012	0.033 0.021 0.014	0.035 0.023 0.016	0.036 0.024 0.017
		4 5 10	0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.001 0.000 0.000	0.001 0.000 0.000	0.001 0.001 0.000	0.002 0.001 0.000	0.002 0.001 0.000	0.003 0.002 0.000	0.004 0.002 0.000	0.005 0.003 0.000	0.006 0.003 0.000	0.007 0.004 0.001	0.009 0.006 0.001	0.010 0.006 0.002
		15 20 50	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	C.CCO C.CCO C.COO	0.000 0.000 0.000	0.000 0.000 0.000	0.001 0.000 0.000

Σ	7	20	~~~~~	2000000	9-9-9-9-9-9-	00000	00000	no k	b/a	Ŷ	00000	00000	00000	rooon	9-0-0-0-0-	•
		0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	8
	0 0,2 0,4	0.000 0.000 0.000	INFINI 0.040 0.004	INFINI 0.065 0.007	INFINI 0.078 0.008	INFINI 0.081 0.007	INF INI 0.081 0.006	INFINI 0.079 0.003	INFINI 0.072 -0.003	INFINI 0.066 -0.010	INFINI 0.062 -0.013	INFINI 0.061 -0.014	INFINI 0.060 -0.016	INFINI 0.058 -0.017	INFINI 0.057 -0.018	INFINI 0.057 -0.018
Le L	0,5 0,6 0,8	0.000 0.000 0.000	0.000 -0.001 -0.002	-0.000 -0.003 -0.004	-0.001 -0.005 -0.007	-0.002 -0.007 -0.008	-0.004 -0.009 -0.010	-0.008 -0.012 -0.013	-0.014 -0.018 -0.018	-0.020 -0.023 -0.023	-0.023 -0.026 -0.025	-0.024 -0.028 -0.027	-0.025 -0.029 -0.028	-0.027 -0.030 -0.029	-0.028 -0.031 -0.030	-0.028 -0.031 -0.030
coin cent	1 1,2 1,4	0.000 0.000 0.000	-0.002 -0.001 -0.001	-0.004 -0.003 -0.002	-0.006 -0.005 -0.003	-0.007 -0.005 -0.004	-0.008 -0.007 -0.005	-0.011 -0.009 -0.007	-0.015 -0.012 -0.009	-0.019 -0.015 -0.012	-0.021 -0.017 -0.014	-0.023 -0.019 -0.015	-0.024 -0.019 -0.016	-0.025 -0.021 -0.017	-0.026 -0.022 -0.018	-0.026 -0.022 -0.018
= 2a a	1,5 1,6 1,8	0.000 0.000 0.000	-0.001 -0.001 -0.001	-0.002 -0.002 -0.001	-0.003 -0.003 -0.002	-0.004 -0.003 -0.002	-0.004 -0.004 -0.003	-0.006 -0.005 -0.004	-0.008 -0.007 -0.006	-0.011 -0.009 -0.008	-0.012 -0.011 -0.009	-0.013 -0.012 -0.010	-0.014 -0.013 -0.011	-0.016 -0.014 -0.012	-0.016 -0.015 -0.012	-0.016 -0.015 -0.013
2	2 2,5 3	0.000 0.000 0.000	-0.000 -0.000 -0.000	-0.001 -0.001 -0.000	-0.002 -0.001 -0.001	-0.002 -0.001 -0.001	-0.002 -0.001 -0.001	-0.003 -0.002 -0.001	-0.004 -0.003 -0.002	-0.006 -0.004 -0.002	-0.007 -0.004 -0.003	-0.008 -0.005 -0.003	-0.009 -0.006 -0.004	-0.010 -0.007 -0.005	-0.011 -0.007 -0.005	-0.011 -0.007 -0.005
	4 5 1 0	0.000 0.000 0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	-0.001 -0.000 -0.000	-0.001 -0.000 -0.000	-0.001 -0.001 -0.000	-0.001 -0.001 -0.000	-0.002 -0.001 -0.000	-0.002 -0.001 -0.000	-0.002 -0.001 -0.000	-0.003 -0.002 -0.000	-0.003 -0.002 -0.000
	15 20 50	0.000 0.000 0.000	-0.000 -0.000 -0.000	-0.000 -0.000 0.000												

1

64

EXPRESSION DES COEFFICIENTS P, Q, S, T, Q', S' et T'.

$1 \leq \alpha \leq \infty$	$\alpha \rightarrow \infty$	α = ∞
(a) Coefficient $P(\alpha = b/a \sin b \ge a, et \alpha = a/b \sin a \ge b)$		
$P_{C} = \frac{1}{\pi} \left[ \log_{e} \left( \alpha + \sqrt{1 + \alpha^{2}} \right) + \alpha \log_{e} \frac{1 + \sqrt{1 + \alpha^{2}}}{\alpha} \right]$	$\frac{1}{\pi} (1 + \log_e 2\alpha)$	80
$P_{M} = \frac{1}{\pi} \left[ 2 \log_{e} \frac{\alpha + \sqrt{4 + \alpha^{2}}}{2} + \alpha \log_{e} \frac{2 + \sqrt{4 + \alpha^{2}}}{\alpha} \right]$	$\frac{2}{\pi} (1 + \log_e \alpha)$	œ
$P_N = \frac{1}{\pi} \left[ \log_e \left( 2\alpha + \sqrt{1 + 4\alpha^2} \right) + 2\alpha \log_e \frac{1 + \sqrt{1 + 4\alpha^2}}{2\alpha} \right]$	$\frac{1}{\pi} (1 + \log_e 4\alpha)$	00
$P_{O} = \frac{2}{\pi} \left[ \log_{e} \left( \alpha + \sqrt{1 + \alpha^{2}} \right) + \alpha \log_{e} \frac{1 + \sqrt{1 + \alpha^{2}}}{\alpha} \right]$	$\frac{2}{\pi} (1 + \log_e 2\alpha)$	80
$P_{m} = \frac{2}{\pi} \left[ \log_{e} \left( \alpha + \sqrt{1 + \alpha^{2}} \right) + \alpha \log_{e} \frac{1 + \sqrt{1 + \alpha^{2}}}{\alpha} + \frac{1 + \alpha^{3} - (1 + \alpha^{2})^{3/2}}{3 \alpha} \right]$	$\frac{1}{\pi} (1 + 2 \log_e 2\alpha)$	∞
(b) Coefficients Q, S, et T (b $\ge$ a, et $\alpha = b/a$ )		
$Q_C = \frac{\alpha}{\pi} \left[ \alpha - \sqrt{1 + \alpha^2} + \log_e \frac{1 + \sqrt{1 + \alpha^2}}{\alpha} \right]$	$\frac{1}{2\pi}\left(1-\frac{1}{12\alpha^2}\right)$	$\frac{1}{2\pi}$
$Q_B = \frac{\alpha}{2\pi} \left[ \alpha - \sqrt{4 + \alpha^2} + 2 \log_e \frac{2 + \sqrt{4 + \alpha^2}}{\alpha} \right]$	$\frac{1}{\pi}\left(1-\frac{1}{3\alpha^2}\right)$	$\frac{1}{\pi}$
$S_C = \frac{1}{2\pi} \left[ \arctan \alpha + \alpha \log_e \frac{\sqrt{1 + \alpha^2}}{\alpha} \right]$	$\frac{1}{4}\left(1-\frac{1}{\pi\alpha}\right)$	$\frac{1}{4}$
$S_B = \frac{1}{\pi} \left[ \arctan \frac{\alpha}{2} + \frac{\alpha}{2} \log_e \frac{\sqrt{4 + \alpha^2}}{\alpha} \right]$	$\frac{1}{2} - \frac{1}{\pi \alpha}$	$\frac{1}{2}$
$T_C = \frac{\alpha}{2\pi} \left[ -1 + \alpha \arctan \frac{1}{\alpha} + \log_e \frac{\sqrt{1 + \alpha^2}}{\alpha} \right]$	$\frac{1}{12 \pi \alpha}$	0
$T_B = \frac{\alpha}{2\pi} \left[ -1 + \frac{\alpha}{2} \arctan \frac{2}{\alpha} + \log_e \frac{\sqrt{4 + \alpha^2}}{\alpha} \right]$	$\frac{1}{3\pi\alpha}$	0
$T_{\mathcal{A}} = \frac{1}{\pi} \left[ \frac{\pi}{8} + \frac{\alpha}{2} - \left( \frac{1}{4} + \alpha^2 \right) \arctan \frac{1}{2\alpha} \right]$	$\frac{1}{8} - \frac{1}{12 \pi \alpha}$	$\frac{1}{8}$
$T_O = \frac{1}{2\pi} \left[ \alpha + \frac{\pi}{2} - (1 + \alpha^2) \arctan \frac{1}{\alpha} \right]$	$\frac{1}{4} - \frac{1}{3\pi\alpha}$	$\frac{1}{4}$
$T_m = \frac{1}{12\pi} \left[ 3\alpha + 4 \arctan \alpha - 4\alpha^2 \arctan \frac{1}{\alpha} + \alpha^3 \log_e \frac{1+\alpha^2}{\alpha^2} - \frac{1}{\alpha} \log_e (1+\alpha^2) \right]$	$\frac{1}{6} - \frac{19 + 12 \log_e \alpha}{72 \pi \alpha}$	$\frac{1}{6}$
(c) Coefficients Q', S', et T' ( $a \ge b$ , et $\alpha = a/b$ )		
$Q'_{C} = \frac{1}{\pi} \left[ \frac{1}{\alpha} - \frac{\sqrt{1+\alpha^2}}{\alpha} + \log_{e} \left( \alpha + \sqrt{1+\alpha^2} \right) \right]$	$\frac{1}{\pi} \ (-1 + \log_e \ 2\alpha)$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
$Q_B' = \frac{1}{2\pi} \left[ \frac{1}{\alpha} - \frac{\sqrt{1+4\alpha^2}}{\alpha} + 2 \log_e \left( 2\alpha + \sqrt{1+4\alpha^2} \right) \right]$	$\frac{1}{\pi} \ (-1 + \log_e \ 4\alpha)$	8
$S'_C = \frac{\alpha}{2\pi} \left[ \arctan \frac{1}{\alpha} + \frac{1}{\alpha} \log_e \sqrt{1 + \alpha^2} \right]$	$\frac{1}{2\pi} (\log_e \alpha + 1)$	∞
$S'_B = \frac{\alpha}{\pi} \left[ \arctan \frac{1}{2\alpha} + \frac{1}{2\alpha} \log_e \sqrt{1 + 4\alpha^2} \right]$	$\frac{1}{2\pi} (\log_e 2\alpha + 1)$	œ
$T_C^* = \frac{1}{2\pi} \left[ -1 + \frac{1}{\alpha} \arctan \alpha + \log_e \sqrt{1 + \alpha^2} \right]$	$\frac{1}{2\pi} (-1 + \log_e \alpha)$	∞
$T_B' = \frac{1}{2\pi} \left[ -1 + \frac{1}{2\alpha} \arctan 2\alpha + \log_e \sqrt{1 + 4\alpha^2} \right]$	$\frac{1}{2\pi} \ (-1 + \log_e 2\alpha)$	×
$T'_{A} = \frac{\alpha}{\pi} \left[ \frac{\pi}{8} + \frac{1}{2\alpha} - \left( \frac{1}{4} + \frac{1}{\alpha^{2}} \right) \arctan \frac{\alpha}{2} \right]$	$\frac{1}{\pi} - \frac{1}{2\alpha}$	$\frac{1}{\pi}$
$T'_{O} = \frac{1}{2\pi} \left[ 1 + \frac{\pi}{2} \alpha - \left( \alpha + \frac{1}{\alpha} \right) \arctan \alpha \right]$	$\frac{1}{\pi} - \frac{1}{4\alpha}$	$\frac{1}{\pi}$
$T_m^* = \frac{1}{12\pi} \left[ 3 + 4\alpha \arctan \frac{1}{\alpha} - \frac{4}{\alpha} \arctan \alpha + \frac{1}{\alpha^2} \log_e (1 + \alpha^2) - \alpha^2 \log_e \frac{1 + \alpha^2}{\alpha^2} \right]$	$\frac{1}{2\pi} - \frac{1}{6\alpha} + \frac{2\log_e \alpha}{\alpha^2}$	$\frac{1}{2\pi}$

66

4-1

 $\begin{array}{c|c} \dot{\mathsf{E}}\mathsf{CRITURE} & \mathsf{EXPLICITE} & \mathsf{DE} & \mathsf{K}, \mathsf{L}, \mathsf{M}, \mathsf{N} & \mathsf{et} & \boldsymbol{\Sigma} \\ (\texttt{COEFFICIENTS} \texttt{DONT} \texttt{LES} \texttt{VALEURS} \texttt{NUMERIQUES} \texttt{SE} \texttt{TROUVENT} \texttt{DANS} \\ \texttt{LES} \texttt{TABLES} \texttt{ET} \texttt{GRAPHIQUES} \texttt{PRECEDENTS}) \\ \alpha = \texttt{b}/\texttt{a} \\ \zeta = \begin{cases} = \texttt{z}/\texttt{2a} & \texttt{coin} \\ = \texttt{z}/\texttt{a} & \texttt{centre} \end{cases}$ 

$$\begin{split} & K_{0} = \frac{1}{2 \pi} \left[ \frac{\alpha \zeta}{\sqrt{1 + \alpha^{2} + \zeta^{2}}} \left( \frac{1}{1 + \zeta^{2}} + \frac{1}{\alpha^{2} + \zeta^{2}} \right) + \operatorname{Arctg} \frac{\alpha}{\zeta \sqrt{1 + \alpha^{2} + \zeta^{2}}} \right] \\ & K_{1} = \frac{\alpha}{2 \pi} \left[ \frac{1}{\sqrt{\alpha^{2} + \zeta^{2}}} - \frac{\zeta^{2}}{(1 + \zeta^{2}) \sqrt{1 + \alpha^{2} + \zeta^{2}}} \right] \\ & K_{2} = \frac{1}{2 \pi} \left[ \operatorname{Arctg} \frac{\alpha}{\zeta \sqrt{1 + \alpha^{2} + \zeta^{2}}} - \frac{\alpha \zeta}{(1 + \zeta^{2}) \sqrt{1 + \alpha^{2} + \zeta^{2}}} \right] \\ & K_{3} = \frac{1}{2 \pi} \left[ 2 \log \frac{\sqrt{1 + \zeta^{2}(\alpha + \sqrt{\alpha^{2} + \zeta^{2}})}}{\zeta(\alpha + \sqrt{1 + \alpha^{2} + \zeta^{2}})} - \frac{\alpha}{(1 + \zeta^{2}) \sqrt{1 + \alpha^{2} + \zeta^{2}}} \right] \\ & K_{4} = \frac{1}{2 \pi} \left[ 1 - \frac{\zeta}{\sqrt{1 + \zeta^{2}}} - \frac{\zeta}{\sqrt{\alpha^{2} + \zeta^{2}}} + \frac{\zeta}{\sqrt{1 + \alpha^{2} + \zeta^{2}}} \right] \\ & K_{5} = \frac{1}{2 \pi} \left[ \alpha \left( \frac{1}{\sqrt{1 + \alpha^{2} + \zeta^{2}}} - \frac{1}{\sqrt{\alpha^{2} + \zeta^{2}}} \right) + \log \frac{(\alpha + \sqrt{\alpha^{2} + \zeta^{2}}) \sqrt{1 + \alpha^{2} + \zeta^{2}}}{\zeta(\alpha + \sqrt{1 + \alpha^{2} + \zeta^{2}})} \right] \\ & K_{2} = \frac{1}{2 \pi} \left[ \operatorname{Arctg} \frac{\alpha \sqrt{1 + \alpha^{2} + \zeta^{2}}}{1 + \alpha^{2}} - \operatorname{Arctg} \alpha \right] \\ & K_{3}^{1} = \frac{1}{2 \pi} \left[ \frac{\alpha(\zeta - \sqrt{1 + \alpha^{2} + \zeta^{2}})}{1 + \alpha^{2}} + \frac{\sqrt{\alpha^{2} + \zeta^{2}} - \zeta}{\zeta} - \operatorname{Arctg} \alpha} \right] \\ & K_{4}^{1} = \frac{1}{2 \pi} \log \frac{(\zeta + \sqrt{1 + \zeta^{2}}) (\zeta + \sqrt{\alpha^{2} + \zeta^{2}})}{\zeta(\zeta + \sqrt{1 + \alpha^{2} + \zeta^{2}})} + \log \frac{\sqrt{1 + \zeta^{2}} (\alpha + \sqrt{\alpha^{2} + \zeta^{2}})}{\zeta(\alpha + \sqrt{1 + \alpha^{2} + \zeta^{2}})} \right] \\ & K_{5}^{1} = \frac{1}{2 \pi} \left[ \alpha \left( \frac{1}{\zeta + \sqrt{1 + \zeta^{2}}} - \frac{1}{\zeta^{2} + \zeta^{2}} - \frac{1}{\zeta + \sqrt{\alpha^{2} + \zeta^{2}}} \right) + \log \frac{\sqrt{1 + \zeta^{2}} (\alpha + \sqrt{\alpha^{2} + \zeta^{2}})}{\zeta(\alpha + \sqrt{1 + \alpha^{2} + \zeta^{2}})} \right] \\ & K_{1}^{1} = \frac{1}{2 \pi} \left[ \alpha \left( \frac{1}{\zeta + \sqrt{1 + \zeta^{2}}} - \frac{\zeta^{2}}{\zeta^{2} + \zeta^{2}} - \frac{1}{\zeta + \sqrt{\alpha^{2} + \zeta^{2}}} \right) + \log \frac{\sqrt{1 + \zeta^{2}} (\alpha + \sqrt{\alpha^{2} + \zeta^{2}})}}{\zeta(\alpha + \sqrt{1 + \alpha^{2} + \zeta^{2}})} \right] \\ & L_{1} = \frac{1}{2 \pi} \left[ \frac{1}{\sqrt{1 + \zeta^{2}}} - \frac{\zeta^{2}}{(\alpha^{2} + \zeta^{2}) \sqrt{1 + \alpha^{2} + \zeta^{2}}} \right] \\ & L_{1} = \frac{1}{2 \pi} \left[ \frac{1}{\sqrt{1 + \zeta^{2}}} - \frac{\zeta^{2}}{(\alpha^{2} + \zeta^{2}) \sqrt{1 + \alpha^{2} + \zeta^{2}}} \right] \\ \end{array}$$

$$\begin{split} & L_{2} = \frac{1}{2\pi} \left[ \operatorname{Arctg} \frac{\alpha}{\sqrt{1 + \alpha^{2} + z^{2}}} - \frac{\alpha \zeta}{(\alpha^{2} + z^{2})\sqrt{1 + \alpha^{2} + z^{2}}} \right] \\ & L_{5} = \frac{1}{2\pi} \left[ \frac{1}{\sqrt{1 + \alpha^{2} + z^{2}}} - \frac{1}{\sqrt{1 + z^{2} + z^{2}}} + \operatorname{Log} \frac{\sqrt{\alpha^{2} + z^{2}}(1 + \sqrt{1 + z^{2}})}{z(1 + \sqrt{1 + \alpha^{2} + z^{2}})} \right] \\ & L_{2}^{1} = \frac{1}{2\pi} \left[ \operatorname{Arctg} \frac{\sqrt{1 + \alpha^{2} + z^{2}}}{\alpha \zeta} - \operatorname{Arctg} \frac{1}{\alpha} \right] \\ & L_{3}^{1} = \frac{1}{2\pi} \left[ \frac{1}{z + \sqrt{1 + z^{2}}} - \frac{1}{z + \sqrt{1 + z^{2} + z^{2}}} + \operatorname{Arctg} \frac{z}{\sqrt{1 + \alpha^{2} + z^{2}}} \right] \\ & M_{0} = \frac{1}{2\pi} \left[ \operatorname{Arctg} \frac{\alpha}{\sqrt{1 + \alpha^{2} + z^{2}}} - \frac{1}{z + \sqrt{1 + \alpha^{2} + z^{2}}} + \frac{\alpha \zeta}{\sqrt{1 + \alpha^{2} + z^{2}}} \left( \frac{1}{\alpha^{2} + z^{2}} - \frac{1}{1 + z^{2}} \right) \right] \\ & M_{1} = \frac{1}{2\pi} \left[ \frac{\alpha z^{2}}{(1 + z^{2})\sqrt{1 + \alpha^{2} + z^{2}}} + \frac{\alpha}{\sqrt{\alpha^{2} + z^{2}}} - 2 \zeta \operatorname{Arctg} \frac{\alpha}{z \sqrt{1 + \alpha^{2} + z^{2}}} \right] \\ & M_{2} = \frac{1}{2\pi} \left[ \frac{\alpha z^{2}}{(1 + z^{2})\sqrt{1 + \alpha^{2} + z^{2}}} + \frac{\alpha}{\sqrt{\alpha^{2} + z^{2}}} - 2 \zeta \operatorname{Arctg} \frac{\alpha}{z \sqrt{1 + \alpha^{2} + z^{2}}} \right] \\ & M_{2} = \frac{1}{2\pi} \left[ \frac{\alpha z^{2}}{(1 + z^{2})\sqrt{1 + \alpha^{2} + z^{2}}} + \frac{1}{2} \operatorname{Log} \frac{z(\alpha + \sqrt{1 + \alpha^{2} + z^{2}})}{\sqrt{1 + z^{2} + z^{2}}} \right] \\ & M_{3} = \frac{1}{\pi} \left[ \operatorname{Log} \frac{\sqrt{1 + z^{2}(\alpha + \sqrt{\alpha^{2} + z^{2})}}}{z(\alpha + \sqrt{1 + \alpha^{2} + z^{2}})} - 3 \alpha \operatorname{Log} \frac{1 + \sqrt{1 + \alpha^{2} + z^{2}}}{\sqrt{1 + \alpha^{2} + z^{2}}} + \frac{\alpha}{\sqrt{1 + \alpha^{2} + z^{2}}} \right] \\ & M_{3} = \frac{1}{\pi} \left[ 1 + \frac{z}{\sqrt{1 + z^{2}}} - \frac{z}{\sqrt{\alpha^{2} + z^{2}}} - \frac{z}{\sqrt{1 + \alpha^{2} + z^{2}}} + 2 \zeta \operatorname{Log} \frac{z(1 + \sqrt{1 + \alpha^{2} + z^{2}})}{\sqrt{1 + \alpha^{2} + z^{2}}} \right] \\ & M_{4} = \frac{1}{2\pi} \left[ 1 + \frac{z}{\sqrt{1 + z^{2}}} - \frac{z}{\sqrt{\alpha^{2} + z^{2}}} - \frac{z}{\sqrt{\alpha^{2} + z^{2}}} + 2 \zeta \operatorname{Log} \frac{z(1 + \sqrt{1 + \alpha^{2} + z^{2})}}{\sqrt{\alpha^{2} + z^{2}}(1 + \sqrt{1 + z^{2} + z^{2}})}} \right] \\ & M_{4} = \frac{1}{2\pi} \left[ 1 + \frac{z}{\sqrt{1 + z^{2}}} - \frac{z}{\sqrt{\alpha^{2} + z^{2}}}} - \frac{z}{\sqrt{\alpha^{2} + z^{2}}} + 2 \zeta \operatorname{Log} \frac{z(1 + \sqrt{1 + \alpha^{2} + z^{2})}}{\sqrt{\alpha^{2} + z^{2}}(1 + \sqrt{1 + z^{2} + z^{2}})}} \right] \\ & M_{5} = \frac{1}{2\pi} \left[ 1 + \frac{z}{\sqrt{1 + z^{2}}} - \frac{z}{\sqrt{\alpha^{2} + z^{2}}} - \frac{z}{\sqrt{\alpha^{2} + z^{2}}} + 2 \zeta \operatorname{Log} \frac{z(1 + \sqrt{1 + \alpha^{2} + z^{2})}}{\sqrt{\alpha^{2} + z^{2}}(1 + \sqrt{1 + z^{2} + z^{2}})}} \right] \\ & M_{5} = \frac{1}{2\pi} \left[ 1 + \frac{z}{\sqrt{1 + z^{$$

$$\begin{split} \mathsf{M}_{5} &= \frac{1}{2 \pi} \left[ -\alpha \left( \frac{1}{\sqrt{1 + a^{2} + z^{2}}} + \frac{1}{\sqrt{a^{2} + z^{2}}} \right) + \log \frac{\sqrt{1 + z^{2}(a + \sqrt{a^{2} + z^{2}})}}{z(a + \sqrt{1 + a^{2} + z^{2}})} + 2 \ z \ \text{Arctg} \frac{a}{z \ \sqrt{1 + a^{2} + z^{2}}} \right] \\ \mathsf{M}_{2}^{t} &= \frac{1}{2 \pi} \left[ \operatorname{Arctg} \frac{a \sqrt{1 + a^{2} + z^{2}}}{z} + \frac{1}{\sqrt{a^{2} + z^{2}}} - \operatorname{Arctg} a - 2 \ \alpha \ \log \frac{g + \sqrt{1 + a^{2} + z^{2}}}{z + \sqrt{a^{2} + z^{2}}} \right] \\ \mathsf{M}_{3}^{t} &= \frac{1}{2 \pi} \left[ \frac{\alpha}{z + \sqrt{1 + a^{2} + z^{2}}} + \frac{\alpha}{z + \sqrt{a^{2} + z^{2}}} - 2 \ \alpha \ \log \frac{1 + \sqrt{1 + a^{2} + z^{2}}}{\sqrt{a^{2} + z^{2}}} \right] \\ \mathsf{M}_{3}^{t} &= \frac{1}{2 \pi} \left[ 2 \ a \ \operatorname{Arctg} a - 2 \ a \ \operatorname{Arctg} \frac{a \sqrt{1 + a^{2} + z^{2}}}{z} + \frac{\alpha}{z + \sqrt{a^{2} + z^{2}}} - 2 \ \alpha \ \log \frac{(z + \sqrt{1 + a^{2} + z^{2}})}{\sqrt{a^{2} + z^{2}}} \right] \\ \mathsf{M}_{4}^{t} &= \frac{1}{2 \pi} \left[ 2 \ a \ \operatorname{Arctg} a - 2 \ a \ \operatorname{Arctg} \frac{a \sqrt{1 + a^{2} + z^{2}}}{z} + \log \frac{(z + \sqrt{1 + a^{2} + z^{2}})}{2 \ z (z + \sqrt{1 + a^{2} + z^{2}})} \right] \\ - 2 \ z \ \log \frac{z(1 + \sqrt{1 + a^{2} + z^{2}})}{\sqrt{a^{2} + z^{2}(1 + \sqrt{1 + a^{2} + z^{2}})}} \\ - 2 \ z \ \log \frac{z(1 + \sqrt{1 + a^{2} + z^{2})}}{\sqrt{a^{2} + z^{2}(1 + \sqrt{1 + z^{2} + z^{2}})}} \\ - 2 \ z \ \log \frac{z(1 + \sqrt{1 + a^{2} + z^{2}})}{\sqrt{a^{2} + z^{2}(1 + \sqrt{1 + z^{2} + z^{2}})}} \\ + 2 \ z \ \operatorname{Arctg} \frac{a \sqrt{1 + a^{2} + z^{2}}}{z} + \log \frac{\sqrt{1 + z^{2}(z + \sqrt{a^{2} + z^{2})}}}{z(a + \sqrt{1 + a^{2} + z^{2}})} \\ + 2 \ z \ \operatorname{Arctg} \frac{a \sqrt{1 + a^{2} + z^{2}}}{z(a + \sqrt{1 + a^{2} + z^{2}})}} \\ \mathsf{N}_{1} &= \frac{1}{2 \pi} \left[ \frac{1}{\sqrt{1 + z^{2}}} - \frac{z^{2}}{(a^{2} + z^{2})} \sqrt{1 + a^{2} + z^{2}}} + \frac{2 \ z^{2}}{\sqrt{1 + z^{2} + z^{2}}} - \frac{2 \ z \ \cos \frac{\sqrt{1 + z^{2} + z^{2}}}{z(a + \sqrt{1 + a^{2} + z^{2})}}} \\ \mathsf{N}_{2} &= \frac{1}{2 \pi} \left[ \operatorname{Arctg} \frac{a}{z \sqrt{1 + a^{2} + z^{2}}} - \frac{a^{2}}{(a^{2} + z^{2}) \sqrt{1 + a^{2} + z^{2}}}} - \frac{2 \ z \ \cos \frac{\sqrt{1 + z^{2} + z^{2}}}{\sqrt{1 + a^{2} + z^{2}}}} + \frac{2 \ z^{2} \ z^{2}}{\sqrt{1 + a^{2} + z^{2}}}} \right] \\ \mathsf{N}_{5} &= \frac{1}{2 \pi} \left[ \mathsf{Arctg} \frac{a}{z \sqrt{1 + a^{2} + z^{2}}} - \sqrt{a^{2} + z^{2}} - \sqrt{1 + z^{2} + z^{2}}} - \sqrt{1 + z^{2} + z^{2}}} + \operatorname{Log} \frac{\sqrt{1 + z^{2} + z^{2} + z^{2}}}{\sqrt{1 + a^{2} + z^{2}}} \right] \\ \mathsf{N}_{5} &= \frac{1}{2 \pi} \left[ \mathsf{Arctg} \frac{a}{z \sqrt{1 + a^{2} + z^{$$

$$\begin{split} N_{2}^{i} &= \frac{1}{2 \pi} \left[ \operatorname{Arctg} \frac{\sqrt{1 + \alpha^{2} + \zeta^{2}}}{\alpha \zeta} - \operatorname{Arctg} \frac{1}{\alpha} - 2 \alpha \log \frac{\zeta + \sqrt{\alpha^{2} + \zeta^{2}}}{\zeta + \sqrt{1 + \alpha^{2} + \zeta^{2}}} - 2 \zeta \log \frac{\sqrt{1 + \zeta^{2}(\alpha + \sqrt{\alpha^{2} + \zeta^{2}})}}{\zeta (\alpha + \sqrt{1 + \alpha^{2} + \zeta^{2}})} \right] \\ N_{3}^{i} &= \frac{1}{2 \pi} \left[ \frac{1}{\zeta + \sqrt{1 + \zeta^{2}}} - \frac{1}{\zeta + \sqrt{1 + \alpha^{2} + \zeta^{2}}} - \frac{2 \alpha^{2}}{\zeta + \sqrt{1 + \alpha^{2} + \zeta^{2}}} + \frac{2 \alpha^{2}}{\zeta + \sqrt{\alpha^{2} + \zeta^{2}}} + 2 \zeta \log \frac{2 \zeta (\zeta + \sqrt{1 + \alpha^{2} + \zeta^{2}})}{(\zeta + \sqrt{1 + \alpha^{2} + \zeta^{2}})} \right] \\ \Sigma_{p}^{i} &= \frac{1}{\pi} \operatorname{Arctg} \frac{\alpha}{\zeta \sqrt{1 + \alpha^{2} + \zeta^{2}}} - 2 \zeta \log \frac{\sqrt{1 + \zeta^{2}(\alpha + \sqrt{\alpha^{2} + \zeta^{2}})}}{\zeta (\alpha + \sqrt{1 + \alpha^{2} + \zeta^{2}})} \\ \Sigma_{q}^{i} &= \frac{1}{\pi} \left[ \log \frac{\sqrt{1 + \zeta^{2}(\alpha + \sqrt{\alpha^{2} + \zeta^{2}})}}{\zeta (\alpha + \sqrt{1 + \alpha^{2} + \zeta^{2}})} - 2 \alpha \log \frac{1 + \sqrt{1 + \alpha^{2} + \zeta^{2}}}{\sqrt{\alpha^{2} + \zeta^{2}}} + 2 \zeta \operatorname{Arctg} \frac{\alpha}{\zeta \sqrt{1 + \alpha^{2} + \zeta^{2}}} \right] \\ \Sigma_{t}^{i} &= \frac{1}{\pi} \left[ \log \frac{\sqrt{1 + \zeta^{2}(\alpha + \sqrt{\alpha^{2} + \zeta^{2}})}}{\zeta (\alpha + \sqrt{1 + \alpha^{2} + \zeta^{2}})} - 2 \alpha \log \frac{1 + \sqrt{1 + \alpha^{2} + \zeta^{2}}}{\sqrt{\alpha^{2} + \zeta^{2}}} + 2 \zeta \operatorname{Arctg} \frac{\alpha}{\zeta \sqrt{1 + \alpha^{2} + \zeta^{2}}} \right] \\ \end{array}$$

#### BIBLIOGRAPHIE

A l'exception des coefficients  $Q_{\phi}$  et  $S_{\phi}$  dus à Vogt [5], nous avons calculé tous les autres coefficients utilisés dans cette section et ceci a fait l'objet de deux publications [2, 3]. Signalons toutefois que Vogt [5] avait déjà calculé les coefficients  $P_c$ ,  $P_m$  et  $S_c$ , Steinbrenner [4], les coefficients  $P_c$  et  $K_o$  et Florin [1], les coefficients  $K_1$ ,  $K_2$ ,  $K'_2$ ,  $L_2$  et  $L'_2$ .

#### REFERENCES

[1] V.A. FLORIN", Osnovi Mecaniki Gruntov", Vol. 1 (Moscou, 1959), p. 124.

[2] J.P. GIROUD", Settlement of a Linearly Louded Rectangular Area", Journal of the Soil Mechanics and Foundations Division, ASCE, 94, SM 4 (July 1968, 813-831.

- [3] J.P. GIROUD, "Stresses under loaded rectangular area", <u>Journal of the Soil</u> <u>Mechanics and Foundations Division</u>", ASCE, 96, SM 1 (January 1970), 263-268.
- [4] W. STEINBRENNER, "Boden mechanik und neuzeitlicher Strassenbau", Volk und Reich Verlag (Berlin, 1936).
- [5] F. VOGT, "Uber die Berechnung der Fundamentdeformation", <u>Avhandlinger utgit</u> <u>av Det Norske Videnkaps</u>, Akademi Math. Naturv. Klasse (Oslo, 1925), p. 8, 9 et 24.

Articles et ouvrages donnant des résultats liés à ceux de cette section :

- N.N. AMBRASEYS, "Discussion on Linearly Variable Load Distribution on A Rectangular Foundation", Journal of the Soil Mechanics and Foundations Division, ASCE, 86, SM 3 (June 1960), 123-125.
- R.F. BAKER and H. GRAY, "Design of Foundations, Embankments and Cut Slopes", <u>Highway Engineering Hand book</u>, Woods Ed., Mc Graw-Hill (New-York, 1960), 11-18.
- R.E. FADUM, "Influence Values for Estimating Stresses in Elastic Foundations", <u>Comptes-Rendus du 2^e Congrès International de Mécanique des Sols</u>, 3 (Rotterdam, 1948) 77-84.
- R. JELINEK, "Setzungsberechnung Ausmittig Belasteter Fundamente", <u>Baupl. und Bau</u>technik, 3, 4 (Avril 1949) 117.
- A.R. JUMIKIS, "Soil vertical stresses influence charts for rectangles", <u>Journal of</u> <u>the Soil Mechanics and Foundations Division</u>, ASCE, 97, SM 2 (February 1971), 521-528.
- S. SPAGNOLETTI, "Sul Comportamento della Diga a Gravità Alleggerita a Elementi Cavi Tipo Marcello", <u>L'Energia Elettrica</u>, 37, 10 (Ottobre 1960), 877-907.
- A.C STAMATOPOULOS, "Linearly variable load distribution on a rectangular foundation", Journal of the Soil Mechanics and Foundation Division, ASCE, 85, SM 6 (December 1959), 137-152 (p. 146)
- K. SZECHI, "Der <u>Grundbau Untersuchung und Festigkeitslehre des Baugrundes</u>", Springer Verlag (Wien, 1963), p. 276.

SECTION 4-2

# FONDATION RECTANGULAIRE EXERÇANT UNE CHARGE NORMALE LINÉAIREMENT RÉPARTIE

(Semelle, Radier souple) sur un sol homogène d'épaisseur infinie

## SOMMAIRE

- Définition du sol
- Définition de la charge
- Calcul direct du tassement
- Calcul des contraintes
- Tables et Graphiques
- Expression des coefficients
- Bibliographie

Chapitre 4

#### DEFINITION DU SOL

Le sol est supposé homogène sur une <u>épaisseur infinie</u> ("milieu semi-infini"). Si le sol n'est pas homogène, les valeurs données ici pour les contraintes (en particulier pour  $\sigma_z$ ) peuvent cependant être considérées comme une bonne approximation des contraintes réelles, sauf, peut-être, dans le cas d'une *couche de sol très dur reposant sur des terrains bien plus mous*. Au contraire, pour que les valeurs du tassement données ici soient correctes, il faut que les hypothèses (homogénéité et épaisseur infinie) soient respectées, du moins avec une bonne approximation. Par exemple, si le sol est composé d'une couche d'épaisseur H reposant sur un substratum peu déformable, il faut, pour que <u>l'erreur sur le tassement</u> soit inférieure à 20 %, que la condition suivante soit respectée :

(1) H > L + 2 B,

#### avec :

L, B : longueur et largeur de la fondation rectangulaire.

#### DEFINITION DE LA CHARGE

Nous supposons que la charge exercée se traduit, au contact fondation/sol, par une <u>distribution linéaire de contraintes normales</u>. Pour la définir, nous donnons  $p_1, p_2$  et  $p_3$ , valeurs de la contrainte normale aux trois coins du rectangle,  $C_1$ ,  $C_2$  et  $C_3$  définis par (Fig. 1) :

- $C_1 C_2 = 2 a : côté parallèle à 0x$
- $C_1 C_3 = 2 b : côté parallèle à Oy$
- C1 : coin choisi de façon que le trièdre Oxyz soit de sens direct (Deux positions sont possibles pour C1 : celle de la figure 1, et celle qui consiste à mettre C1 en C4, C2 en C3 et C3 en C2 et à changer l'orientation des axes Ox et Oy).

Notons que 2a peut-être soit le <u>petit côté</u> (2a = B), soit le <u>grand côté</u> (2a = L) du rectangle.

En prenant l'origine des axes en C₁, la contrainte normale p(x, y) en un point quelconque du rectangle s'écrit :

(2) 
$$p(x, y) = p_1 + (p_2 - p_1) \frac{x}{2a} + (p_3 - p_1) \frac{y}{2b}$$

Section 4-2

En particulier, on a au centre :

(3) 
$$p_0 = \frac{p_1 + p_2 + p_3 + p_4}{4} = \frac{p_1 + p_4}{2} = \frac{p_2 + p_3}{2}$$

et, au quatrième coin :

(4) 
$$p_1 = p_2 + p_3 - p_1$$

Cette distribution linéaire de contraintes normales admet une <u>résultante</u> (Fig. 1) dont l'intensité et le point d'application sont définis par les relations suivantes :

(5) 
$$N = \frac{p_2 + p_3}{2}$$
 LB = 2 ab  $(p_2 + p_3)$ 

(6) 
$$e_x = \frac{p_2 - p_1}{6(p_2 + p_3)}$$

(7) 
$$e_y = \frac{p_3 - p_1}{6(p_2 + p_3)}$$

avec :

N : résultante des contraintes normales exercées par la fondation sur le sol ;



FIG. 1. - Définition de la charge et de sa résultante.

 $e_x$ ,  $e_y$ : excentricité de N (Fig. 1).

Inversement, les relations suivantes permettent de trouver la répartition linéaire qui correspond à une résultante donnée par N,  $e_x$  et  $e_y$ :

- (8)  $p_1 = \frac{N}{LB} (1 6 e_x 6 e_y)$
- (9)  $p_2 = \frac{N}{LB} (1 + 6 e_x 6 e_y)$
- (10)  $p_3 = \frac{N}{LB} (1 6 e_x + 6 e_y)$
- (11)  $p_{\downarrow} = \frac{N}{LB} (1 + 6 e_x + 6 e_y)$

Toutefois il faut bien noter qu'*une résultante donnée est équivalente à une infinité de répartitions de contraintes*. Parmi celles-ci, une seule est linéaire et elle est définie par (8) (9) (10) et (11).

Exemple 1 :

Soit un radier de 12 m (40 ft) de large et 18 m (60 ft) de long, supportant une charge de 2,5 × 10⁷ newtons (5,7 × 10⁶ lb) avec un excentrement de  $E_x = 1,8$  m (6 ft) et  $E_y = 0,6$  m (2 ft), l'axe 0x étant choisi parallèle au grand côté (Fig. 2). Quelle est la répartition linéaire équivalente de contraintes normales ?

Calculons d'abord l'excentricité :

$$e_{x} = \frac{E_{x}}{2a} = \frac{1,8}{18} = \frac{6}{60} = 0,1$$
$$e_{y} = \frac{E_{x}}{2b} = \frac{0,6}{12} = \frac{2}{40} = 0,05.$$

Le calcul de p, se fait alors à l'aide de (8) :

$$p_1 = \frac{2.5 \times 10^7}{12 \times 18} (1 - 0.6 - 0.3) = 0.12 \times 10^5 \text{ Pascals} = 0.12 \text{ bar},$$
$$p_1 = \frac{5.7 \times 10^6}{40 \times 60} (1 - 0.6 - 0.3) = 250 \text{ lb/sq. ft.}$$

De même, à l'aide de (9) (10) et (11) :

 $\begin{array}{l} p_2 = 1,51 \; \text{bar} & (3 \; 100 \; 1\text{b/sq. ft}), \\ p_3 = 0,81 \; \text{bar} & (1 \; 700 \; 1\text{b/sq. ft}), \\ p_h = 2,20 \; \text{bars} \; (4 \; 550 \; 1\text{b/sq. ft}). \end{array}$ 

4_



FIG. 2. - Définition du radier de l'exemple 1.

#### CALCUL DIRECT DU TASSEMENT

Le tassement du centre du rectangle se calcule à l'aide de la formule suivante :

(12) 
$$w_0 = \frac{1-v^2}{E} B(p_2 + p_3) O_w = \frac{1-v^2}{E} \frac{N}{L} 2 O_w$$

avec :

- $w_0$  : tassement du centre 0 ;
- E, v : module d'Young et coefficient de Poisson du sol ;
- L, B : grand et petit côté du rectangle ;
  - N : résultante des charges normales exercées par la fondation sur le sol ;
- p2, p3 : deux contraintes définissant la répartition linéaire de charge (Voir formule (3));
  - O_w : coefficient sans dimensions dont les valeurs numériques sont données en fonction de L/B dans un tableau et un graphique.

75

4.5

Le calcul du <u>tassement de l'un quelconque des quatre coins</u> se fait en appelant C ce soin et A et B les deux coins voisins tels que CA = B (largeur du rectangle) et CB = L (longueur du rectangle) (Fig. 3).

La formule s'écrit :

(13) 
$$w_{\rm C} = \frac{1-v^2}{E} B(p_{\rm A} A_{\rm W} + p_{\rm B} + B_{\rm W} + p_{\rm C} C_{\rm W})$$

avec :

w_C : tassement du coin C
p_A, p_B, p_C : contraintes normales aux points A, B et C ;
 E, v : module d'Young et coefficient de Poisson du sol ;
 B : largeur du rectangle ;
A_w, B_w, C_w : coefficients sans dimensions dont les valeurs numériques sont

données dans une table en fonction de L/B.

Cas particulier : charge uniformément répartie :

La charge est définie alors par :

(14) 
$$p_A = p_B = p_C = p_1 = p_2 = p_3 = p_4 = p = \frac{N}{LB}$$

(15)  $\frac{\text{Le tassement du centre s'écrit :}}{\mathbb{W}_{0} = 2 \frac{1 - \nu^{2}}{\mathbb{E}} \mathbb{B} \mathbb{P} \mathbb{O}_{W} = 2 \frac{1 - \nu^{2}}{\mathbb{E}} \frac{\mathbb{N}}{\mathbb{L}} \mathbb{O}_{W}$ 

(16) 
$$\frac{\text{Le tassement d'un coin s'écrit :}}{\text{E}} = \frac{1 - \nu^2}{\text{E}} \text{B p } 0_{\text{W}} = \frac{1 - \nu^2}{\text{E}} \frac{\text{N}}{\text{L}} 0_{\text{W}} = \frac{\text{W}0}{2}$$

#### Exemple 2 :

Quel est le tassement du centre et des coins du radier souple de l'exemple 1 s'il est supporté par un sol homogène de caractéristiques E = 300 bars (628 000 lb/sq. ft) et v = 0,3?

Pour L/B = 1,5 on lit dans la table :  $A_w = 0,262$   $B_w = 0,234$  $C_w = 0,182$   $O_w = 0,679$ 

Par ailleurs, calculons l'expression suivante, qui servira dans tous les calculs :  $\frac{1-v^2}{E} B = \frac{1-(0,3)^2}{300} \times 12 \times 100 = 3,64 \text{ cm/bar}$  $\frac{1-v^2}{E}B = \frac{1-(0.3)^2}{628\ 000} \times 39 = 5,65\ 10^5\ \text{ft/lb sq. ft.}$ Calcul du tassement du centre :  $p_2 + p_3 = 0,12 + 2,20 = 1,51 + 0,81 = 2,32$  bars = 250 + 4 550 = 3 100 + 1 700 = 4 800 lb/sq. ft. D'où :  $w_0 = 3,64 \times 2,32 \times 0,679 = 5,7 \text{ cm}$ = 5,65 × 10⁻⁵ × 4 800 × 0,679 = 0,185 ft. Calcul du tassement du coin C, : Pour cela, plaçons le point C en C1, le point A en C2 et le point B en C2 (Fig. 3 A). On a alors :  $p_A = p_3 = 0,81$  bar (1 700 lb/sq. ft)  $p_{\rm B} = p_{\rm O} = 1,51$  bar (3 100 lb/sq. ft)  $p_{c} = p_{1} = 0,12$  bar ( 250 lb/sq. ft). D'où :  $W_{C1} = 3,64 \ (0,81 \times 0,262 + 1,51 \times 0,234 + 0,12 \times 0,182)$ = 2.1 cm  $= 5.65 \times 10^{-5} (1.700 \times 0.262 + 3.100 \times 0.234 + 250 \times 0.182) = 0.069 \text{ ft}.$ Calcul du tassement des autres coins :

- Tassement de  $C_2$  : on place C en  $C_2$ , A en  $C_4$  et B en  $C_1$  (Fig. 3 b)
- Tassement de C₃ : on place C en C₃, A en C₁ et B en C₄ (Fig. 3 c)
- Tassement de  $C_{\underline{h}}$  : on place C en  $C_{\underline{h}}$ , A en  $C_{\underline{2}}$  et B en  $C_{\underline{3}}$  (Fig; 3 d).

En procédant ensuite comme pour C, on trouve :

w_{C2} = 3,1 cm (0,1 ft)  $w_{C3} = 2,5 \text{ cm} (0,08 \text{ ft})$ w_{cl} = 3,6 cm (0,115 ft)



FIG. 3. - Position des points A, B et C pour le calcul du tassement (a) en  $C_1$  (b) en  $C_3$  (d) en  $C_4$  (voir exemple 2).

## CALCUL DES CONTRAINTES

Les contraintes provoquées dans le sol par la charge linéaire définie plus haut sont données par les formules suivantes :

1. A la verticale du <u>centre</u> du rectangle chargé :

(17) 
$$\sigma_{x} = 2(p_{2} + p_{3}) \begin{bmatrix} 0_{x} - (1 - 2v) & 0'_{x} \end{bmatrix}$$
  
(18)  $\sigma_{y} = 2(p_{2} + p_{3}) \begin{bmatrix} 0_{y} - (1 - 2v) & 0'_{y} \end{bmatrix}$   
(10)  $\sigma_{y} = 2(p_{2} + p_{3}) \begin{bmatrix} 0_{y} - (1 - 2v) & 0'_{y} \end{bmatrix}$ 

(19) 
$$\sigma_z = 2(p_2 + p_3) \sigma_z$$

(20) 
$$\tau = 0$$
 (zéro)

- (21)  $\tau_{yz} = 2(p_1 p_3) B_{yz}$
- (22)  $\tau_{zx} = 2(p_1 p_2) A_{zx}$

Section 4-2

Notons que :

- (23)  $p_2 + p_3 = p_1 + p_4 = \frac{2 N}{LB}$
- (24)  $p_1 p_3 = p_2 p_4$

(25) 
$$p_1 - p_2 = p_3 - p_4$$

#### 2. A la verticale d'un <u>coin</u> du rectangle chargé :

Le calcul des contraintes sous l'un quelconque des quatre coins se fait en appelant C ce coin et A et B les deux coins voisins tels que CA = 2 a (côté parallèle à Ox) et CB = 2 b (côté parallèle à Oy) (Fig. 4).

Les formules s'écrivent :

avec :

v : coefficient de Poisson du sol ;

 $p_1, p_2, p_3 \text{ et } p_4$  ; valeurs des contraintes normales aux quatre coins  $C_1, C_2, C_3 \text{ et } C_4$  du rectangle ;

- p_A, p_B et p_C : valeurs des contraintes normales aux trois points A, B et C (Notons que ces points changent de place selon le coin à la verticale duquel on fait le calcul, comme on le voit sur la Fig. 4);
  - Signe ± : Ce signe dépend de la position du coin considéré par rapport aux axes (Fig. 5) ;

 $O_i, A_i, B_i$  et  $C_i$ : coefficients sans dimensions donnés dans les tables et graphiques en fonction de b/a et  $\zeta$ ;

 ${\tt GIROUD.} - {\tt Tables \ pour \ le \ calcul \ des \ fondations.} \ {\tt Tome \ 2}$ 

79



FIG. 4. - Position des points A, B et C pour le calcul des contraintes à la verticale

(a)	du	coin	C ₁	(ъ)	du	coin	C2
(c)	du	coin	Cz	(d)	du	coin	С).



FIG. 5. – Valeur de signe  $\pm$  dans les formules (29) (30) et (31).

 $\zeta$  : paramètre sans dimensions valant z/2a à la verticale des coins et z/a à la verticale du centre.

### Cas particulier : charge uniformément répartie

La charge est alors définie par : (32)  $p_A = p_B = p_C = p_1 = p_2 = p_3 = p_4 = p = \frac{N}{LB}$ Les contraintes à la verticale du centre s'écrivent :

- (33)  $\sigma_{x} = 4 p \left[ O_{x} (1 2 v) O_{x}' \right]$
- $(3^{1}) \qquad \sigma_{\mathbf{y}} = 4 \mathbf{p} \left[ O_{\mathbf{y}} (1 2 \mathbf{v}) O_{\mathbf{y}}^{\prime} \right]$
- $(35) \quad \sigma_{z} = 4 p 0_{z}$
- (36)  $\tau_{xy} = \tau_{yz} = \tau_{zx} = 0$

Les contraintes à la verticale d'un coin s'écrivent :

$$(37) \quad \sigma_{\mathbf{x}} = p \left[ \mathbf{0}_{\mathbf{x}} - (1 - 2 \mathbf{v}) \mathbf{0}_{\mathbf{x}}^{\prime} \right]$$

$$(38) \quad \sigma_{\mathbf{y}} = p \left[ \mathbf{0}_{\mathbf{y}} - (1 - 2 \mathbf{v}) \mathbf{0}_{\mathbf{y}}^{\prime} \right]$$

$$(39) \quad \sigma_{\mathbf{z}} = p \mathbf{0}_{\mathbf{z}}$$

$$(40) \quad \tau_{\mathbf{xy}} = \pm p \left[ (\mathbf{A}_{\mathbf{xy}} + \mathbf{B}_{\mathbf{xy}} + \mathbf{C}_{\mathbf{xy}}) - (1 - 2 \mathbf{v}) (\mathbf{A}_{\mathbf{xy}}^{\prime} + \mathbf{B}_{\mathbf{xy}}^{\prime} + \mathbf{C}_{\mathbf{xy}}^{\prime}) \right]$$

$$(41) \quad \tau_{\mathbf{yz}} = \pm p \left[ \mathbf{A}_{\mathbf{yz}} + \mathbf{B}_{\mathbf{yz}} + \mathbf{C}_{\mathbf{yz}} \right]$$

$$(42) \quad \tau_{\mathbf{zx}} = \pm p \left[ \mathbf{A}_{\mathbf{zx}} + \mathbf{B}_{\mathbf{zx}} + \mathbf{C}_{\mathbf{zx}} \right]$$

Exemple 3 :

Quelle est la contrainte  $\tau_{yz}$  à la profondeur z = 18 m (60 ft) sous le coin C₂ (Fig. 2) du radier défini dans les exemples 1 et 2 ?

Nous sommes alors dans le cas de la figure 4 b : il faut alors placer le point C en position  $C_2$ , le point A en  $C_1$  et le point B en  $C_4$ . Donc, d'après l'exemple 1 :

 $\begin{array}{l} {\bf p}_{\rm A} = {\bf p}_1 = 0,12 \ {\rm bar} & ( \ 250 \ {\rm lb/sq. ft}) \\ {\bf p}_{\rm B} = {\bf p}_{\rm h} = 2,20 \ {\rm bars} & (4 \ 550 \ {\rm lb/sq. ft}) \\ {\bf p}_{\rm C} = {\bf p}_2 = 1,51 \ {\rm bar} & (1 \ 700 \ {\rm lb/sq. ft}). \end{array}$ 

82

Le calcul de  $\tau_{yz}$  se fait alors par la formule (30) avec le signe moins d'après la figure 5.

Four b/a = 2/3 et z/2a = 1, les tables donnent :

$$A_{yz} = 0,016$$
  $B_{yz} = 0,026$   $C_{yz} = 0,000.$ 

D'où :

$$\tau_{yz} = -(0,12 \times 0,016 + 2,20 \times 0,026 + 0)$$
  
= -0,059 bar  
= -(250 × 0,016 + 4 550 × 0,026 + 0)  
= -122 lb/sg. ft.

## TABLES ET GRAPHIQUES

- Calcul du tassement		
Coefficients : A _w , B _w , C _w , O _w	p.	84
- Calcul des contraintes		
Coefficients : $A_x$ , $B_x$ , $C_x$ , $A'_x$ , $B'_x$ , $C'_x$	p.	85-90
$A_y, B_y, C_y, A'_y, B'_y, C'_y, \ldots$	p.	91-96
$A_z, B_z, C_z$	p.	97-101
$A_{xy}, B_{xy}, C_{xy}, A'_{xy}, B'_{xy}, C'_{xy}, \ldots$	p.	102-107
$A_{yz}, B_{yz}, C_{yz}$	p.	108-110
$A_{zx}, B_{zx}, C_{zx}$	p.	111-113
$O_x, O_y, O'_x, O'_y, O_z, \ldots$	p.	114-123

63

84

4-2

Chapitre 4

L/B	Aw	Bw	Cw	$\begin{array}{c} O_{\mathbf{w}} = \\ A_{\mathbf{w}} + B_{\mathbf{w}} + C_{\mathbf{w}} \end{array}$	L/B	Aw	B _w	Cw	$\begin{array}{c} O_w = \\ A_w + B_w + C_w \end{array}$
1 1,1 1,2	$0,206 \\ 0,219 \\ 0,231$	0,206 0,213 0,219	$0,149 \\ 0,156 \\ 0,163$	0,561 0,588 0,613	15 20 25	0,621 0,667 0,702	0,308 0,310 0,312	$0,472 \\ 0,515 \\ 0,549$	$1,401 \\ 1,493 \\ 1,564$
1,3 1,4 1,5	$0,242 \\ 0,253 \\ 0,262$	$0,225 \\ 0,230 \\ 0,234$	0,169 0,176 0,182	0,636 0,658 0,679	30 40 50	0,731 0,777 0,813	$0,313 \\ 0,314 \\ 0,315$	0,577 0,622 0,657	1,622 1,713 1,784
1,6 1,7 1,8	0,272 0,281 0,289	$0,238 \\ 0,242 \\ 0,246$	0,188 0,193 0,199	0,698 0,716 0,734	60 70 80	0,842 0,866 0,887	$0,316 \\ 0,316 \\ 0,316$	0,685 0,709 0,730	1,842 1,891 1,934
1,9 2 2,2	0,297 0,305 0,319	0,249 0,252 0,257	0,204 0,209 0,219	0,750 0,766 0,795	90 100 200	$0,906 \\ 0,923 \\ 1,033$	$0,317 \\ 0,317 \\ 0,318$	0,749 0,765 0,875	$1,971 \\ 2,005 \\ 2,225$
2,4 2,5 3	$0,333 \\ 0,339 \\ 0,367$	0,261 0,263 0,271	$0,229 \\ 0,233 \\ 0,254$	0,822 0,835 0,892	$300 \\ 400 \\ 500$	1,098 1,144 1,179	0,318 0,318 0,318	0,939 0,985 1,020	$2,355 \\ 2,446 \\ 2,517$
3,5 4 4,5	0,391 0,412 0,430	0,277 0,282 0,286	0,272 0,288 0,303	0,940 0,982 1,019	600 700 800	1,208 1,233 1,254	0,318 0,318 0,318	$1,049 \\ 1,073 \\ 1,095$	2,575 2,624 2,667
5 6 7	$0,447 \\ 0,476 \\ 0,500$	0,289 0,293 0,297	$0,317 \\ 0,341 \\ 0,362$	$1,052 \\ 1,110 \\ 1,159$	$900 \\ 10^{3} \\ 10^{4}$	$1,273 \\ 1,290 \\ 1,656$	$0,318 \\ 0,318 \\ 0,318 \\ 0,318$	$1,113 \\ 1,130 \\ 1,497$	2,704 2,738 3,471
8 9 10	$0,521 \\ 0,540 \\ 0,557$	0,299 0,301 0,303	0,381 0,398 0.413	$1,201 \\ 1,239 \\ 1,272$	$10^{5}$ $10^{6}$ $\infty$	$^{2,023}_{2,390}_{\infty}$	0,318 0,318 0,318	$^{1,863}_{2,230}$	$^{4,204}_{4,938}_{\infty}$



A	v	~~~	word and and and and and and and and and an	しょうしょう	000004	~~~~~	-0-0-0-0-0		b⁄a	<i>~~</i>	ひゅうゆっし	a subsections and a subsection of the subsection	~~~~~~~	510-0-10-0-r	じゅうしょう	<i>∾</i>
	~	0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	8
0000	0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	C.000	C.CCO	C.COO	0.000	0.000	0.000
	0,2	0.000	0.021	C.038	0.052	0.056	0.061	0.066	0.071	0.072	0.073	0.073	0.073	0.073	0.073	0.073
	0,4	0.000	0.015	C.028	0.042	0.047	0.053	0.060	0.067	0.070	0.071	0.071	0.071	0.071	0.071	0.071
	0,5	0.000	0.012	C.023	0.035	0.039	0.045	0.052	0.059	0.063	0.064	C.064	C.064	0.064	0.064	0.064
	0,6	0.000	0.009	C.018	C.028	0.032	0.038	0.044	0.051	0.055	0.056	0.056	0.057	0.057	0.057	0.057
	0,8	0.000	0.006	C.011	0.018	0.021	0.025	0.030	0.036	0.040	0.041	C.C42	0.042	C.042	0.042	0.042
9	1	C.COO	0.004	C.007	0.012	0.014	0.016	0.020	0.025	0.028	C.030	0.030	C.030	0.031	0.031	0.031
	1,2	0.COO	0.002	0.005	0.008	0.009	0.011	0.013	0.017	0.020	C.021	0.022	0.022	0.022	0.022	0.022
	1,4	0.000	0.002	0.003	0.095	0.006	0.007	0.009	0.012	0.014	C.015	C.016	0.016	0.017	0.017	0.017
2/2	1,5	0.000	0.001	C.CO3	0.004	0.005	0.006	0.008	0.010	0.012	C.013	C.014	0.014	0.014	0.014	0.014
	1,6	0.000	0.331	C.OO2	0.003	0.004	0.005	0.006	0.008	0.010	C.011	0.012	0.012	0.012	0.012	0.012
	1,8	0.000	0.001	C.CO1	0.002	0.003	0.003	0.004	0.006	0.008	C.008	C.009	0.009	6.009	0.009	0.009
200	2	0.000	0.001	C.CO1	0.002	0.002	0.002	0.003	0.004	0.006	0.006	0.007	C.007	0.007	0.007	0.007
	2,5	0.000	0.000	C.OOO	0.001	0.001	0.001	0.002	0.002	0.003	0.003	0.004	C.004	0.004	0.004	0.004
	3	0.000	0.000	C.COO	0.000	0.000	0.001	0.001	0.001	0.002	0.002	C.002	C.002	C.002	0.003	0.003
0000	4 5 1 0	C.000 C.000 C.000	0.000	C.COO C.000 O.COO	C.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.001 0.000 0.000	0.001 0.000 0.000	0.001 0.000 0.000	C.CO1 C.COO C.COO	0.001 0.001 0.000	0.001 0.001 0.000	0.001 0.001 0.000
	15 20 50	0.000 0.000 0.000	0.000 0.000 -0.000	C.COO C.COO -0.000	0.000 0.000 -0.000	0.000 0.000 -0.000	0.000 0.000 -0.000	0.000 0.000 0.000	0.000 0.000 -0.000	0.000 0.000 -0.000	C.COC C.COC C.COC	C.COO 0.COO C.COO	C.COO C.COO -C.COO	C.COC C.COO O.COC	0.000	0.000 0.000 0.000

B.		000	vododada		00000	DDDDDD	~~~~~		b⁄a	~	0-0-0-0-0	~~~~	~~~~~	しょうしょうしょう	9~0~0~0~0~	ð
	(	0	0,1	0,2	1/3	0,4	0,5	² / ₃	1	1,5	2	2,5	3	5	10	8
~~~~	0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	C.CCO	0.000	0.000
	0,2	0.000	0.033	0.051	0.056	0.056	0.053	0.047	0.037	0.027	0.021	0.017	0.014	C.CC8	0.004	0.000
	0,4	0.000	0.015	0.028	0.038	0.040	0.042	0.042	0.036	0.028	0.022	0.018	0.015	C.CC9	0.005	0.000
	0,5	0.000	0.011	0.021	0.030	0.032	0.035	0.036	0.033	0.026	0.021	0.017	0.014	C.009	C.004	0.000
	0,6	0.000	0.008	C.016	0.023	0.026	0.028	0.030	0.029	0.023	0.019	0.016	0.013	O.008	0.004	0.000
	0,8	0.000	0.005	C.009	0.014	0.016	0.018	0.020	0.021	0.018	0.015	0.013	0.011	O.007	0.003	0.000
~	1	0.000	0.003	0.005	0.009	0.010	0.012	0.013	0.015	0.014	0.012	C.010	C.CO9	0.005	0.003	0.000
	1,2	0.000	0.002	0.003	0.005	0.006	0.007	0.009	0.010	0.010	0.009	0.008	C.OO7	0.004	0.002	0.000
	1,4	0.000	0.001	0.002	0.004	0.004	0.005	0.006	0.007	0.008	0.007	0.006	C.OO6	0.004	0.002	0.000
20	1,5	0.000	0.001	0.002	0.003	0.003	0.004	0.005	0.006	0.007	0.006	0.006	C.CO5	C.003	C.002	0.000
	1,6	0.000	0.001	6.001	0.002	0.003	0.003	0.004	0.005	0.006	0.005	0.005	0.004	0.003	0.002	0.000
	1,8	0.000	0.001	6.001	0.002	0.002	0.002	0.003	0.004	0.004	0.004	0.004	0.004	0.002	0.001	0.000
500	2 2,5 3	0.000	0.000 0.000 0.000	0.001 C.000 C.CJO	0.001 0.001 0.000	0.001 0.001 0.000	0.002 0.001 0.000	0.002 0.001 0.001	0.003 0.001 0.001	0.003 0.002 0.001	0.003 0.002 0.001	0.003 0.002 0.001	C.003 C.002 C.001	C.002 0.001 0.001	C.001 0.001 0.001	0.000 0.000 0.000
0000	4	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	C.001	0.000	0.000	0.000
	5	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	C.000	0.000	0.000	0.000
	10	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	C.000	0.000	0.000	0.000
10-0-10-1	15 20 50	0.000 0.000 0.000	-0.000 0.000 -0.000	0.000 -0.000 0.000	0.000 -0.000 -0.003	0.000	0.000 0.000 -0.000	0.000 0.000 -0.000	0.000 0.000 -0.000	0.000 0.000 -0.000	0.000	0.000 0.000 -0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000

C,		~~~	and de de de la constante de la	しょうしょう	9-9-9-9-9-9	-D-D-D-D-D	nononon	~~ /	b⁄a	~	~~~~	~~~~~	500000	5-0-0-0-0-0-	900000	Qu
	(0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	ω
200	0 0,2 0,4	0.000	0.250 0.015 0.001	0.250 0.028 0.003	0.250 0.041 0.006	0.25C 0.047 0.008	0.250 0.054 0.011	0.250 0.064 0.016	0.250 0.077 0.025	0.250 0.088 0.035	0.250 0.094 C.041	C.25C C.098 0.045	0.250 0.101 0.048	C.250 0.106 0.054	0.250 C.111 0.059	0.250 0.115 0.063
0000	0,5	0.000	-0.000	-0.001	0.000	0.001	0.003	0.006	0.013	0.022	0.027	C.C31	C.034	C.039	0.044	0.048
	0,6	0.000	-0.001	-0.002	-0.002	-0.002	-0.001	0.001	0.006	0.013	0.018	0.021	C.024	C.029	0.033	0.037
	0,8	0.000	-0.001	-0.002	-0.003	-0.003	-0.003	-0.003	-0.001	0.004	0.007	0.010	C.012	0.016	0.019	0.023
G	1	0.000	-0.001	-0.002	-0.003	-0.003	-0.003	-0.003	-0.002	0.000	C.002	0.004	0.006	0.009	0.012	0.015
	1,2	0.000	-0.001	-0.001	-0.002	-0.002	-0.002	-0.003	-0.003	-0.001	0.000	0.002	C.003	C.005	0.008	0.010
	1,4	0.000	-0.000	-0.001	-0.001	-0.002	-0.002	-0.002	-0.002	-0.002	-C.001	0.000	C.C01	0.003	0.005	0.007
ZZ	1,5	C.COO	-0.000	-C.001	-0.001	-0.001	-0.002	-0.002	-0.002	-0.002	-0.001	C.CCC	C.001	C.003	0.004	0.006
	1,6	0.COO	-0.000	-0.001	-0.001	-0.001	-0.001	-0.002	-0.002	-0.002	-0.001	-0.000	0.000	C.002	C.CO3	0.005
	1,8	0.COO	-0.000	-C.000	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-C.000	-C.COO	C.001	0.002	0.004
-	2	0.000	-0.000	-0.000	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.000	C.CO1	0.002	0.003
	2,5	0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.001	-0.001	-0.001	-0.001	-0.000	C.COC	C.CO1	0.002
	3	0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	0.000	0.001
	4	0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-C.COO	-C.CCC	-C.COO	-C.COC	0.000	0.000
	5	0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-3.000	-0.000	-0.000	-0.COU	-C.000	-C.COO	-C.COC	0.000	0.000
	10	0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-C.COO	-C.000	-C.OOO	-C.COC	-0.000	0.000
	15 20 50	0.000 0.000 0.000	0.000	C.COO 0.COO -C.COO	-0.000 0.000 0.000	-0.000 0.000 0.000	-0.000 0.000 0.000	-0.000 -0.000 0.000	-0.000 -0.000 0.000	-0.000 -0.000 0.000	-C.000 -C.000 -C.000	-C.CCO -C.CCO 0.000	-0.000 -0.000 0.000	-C.000 -C.C00 0.000	-0.000 -0.000 0.000	0.000 0.000 0.000

A [*] .		~~~	00000	a de	しゅうしょうしょう	りょうしゅうしょ	Provono vo	~ k	b∕a	~~~	そうしょう	60000	うしつし	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~	∞.
X		0	0,1	0,2	1/3	0,4	0,5	² / ₃	1	1,5	2	2,5	3	5	10	œ
2	0	0.000	J.037	C.052	0.061	J.J63	0.064	0.063	0.055	0.044	0.036	0.030	0.025	0.016	0.008	0.000
	0,2	0.000	0.017	C.030	0.041	D.044	0.047	0.049	0.046	0.039	0.032	C.027	0.024	0.015	0.008	-0.000
	0,4	0.000	0.010	C.018	0.027	0.030	0.034	0.037	0.038	0.034	0.029	C.025	0.022	0.014	C.C08	-0.000
	0,5	0.000	0.008	C.014	J.J22	0.025	0.028	0.032	0.034	0.031	0.027	0.024	0.021	0.014	0.008	-0.000
	0,6	0.000	0.006	C.012	0.018	0.021	0.024	0.028	0.030	0.029	0.026	C.023	C.020	6.014	0.007	-0.000
	0,8	0.000	0.004	O.008	0.013	0.015	0.018	6.021	0.024	0.025	0.023	C.C21	C.019	6.013	0.007	-0.000
and the	1	00000	0.003	0.006	0.009	0.011	C.013	0.016	0.020	0.021	0.020	0.019	0.017	0.013	0.007	0.000
	1,2	00000	0.002	0.004	0.007	0.008	C.010	0.013	0.016	0.018	0.018	0.017	0.016	C.C12	0.007	0.000
	1,4	000000	0.002	0.003	0.046	0.007	O.008	0.010	0.013	0.015	0.016	C.C16	0.015	C.O11	0.007	0.000
20	1,5	C.UOD	0.002	C.003	0.005	0.006	0.007	0.009	0.012	0.014	0.015	0.015	C.014	0.011	0.007	-0.000
	1,6	C.COO	0.001	C.003	0.004	0.005	0.006	0.008	0.011	0.013	0.014	C.C14	C.014	0.011	0.007	-0.000
	1,8	O.COO	0.001	C.C02	0.004	0.004	0.005	0.007	0.009	0.012	0.012	C.C13	C.012	0.010	0.007	0.000
	2	0.000	0.001	6.002	0.003	0.004	0.004	0.006	0.008	0.010	0.011	0.012	C.011	0.010	0.006	-0.000
	2,5	0.000	0.001	C.001	0.002	0.002	0.003	0.004	0.005	0.007	0.008	0.009	C.009	0.009	0.006	0.000
	3	0.000	0.000	C.001	0.001	0.002	0.002	0.003	0.004	0.005	0.006	C.CC7	C.008	C.CO8	0.006	-0.000
200	4	0.000	0.000	0.000	0.001	0.001	C.001	0.002	0.002	0.003	0.004	0.005	C.005	0.006	0.005	0.000
	5	0.000	0.000	6.000	0.001	0.001	0.001	0.001	0.002	0.002	0.003	0.003	C.004	0.005	0.004	0.000
	1 0	0.000	0.000	6.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	C.CC1	C.001	C.002	C.002	-0.000
	15 20 50	0.000 0.000 0.000	0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	C.000 C.000 U.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	C.000 C.000 C.COO	0.000 0.000 0.000	C.001 C.000 C.000	C.COC C.COC C.COC	0.001 0.001 0.000	-0.000 -0.000 -0.000

ct.
c+
μ.
0
ロ

B'		000	~~~~~~~~~~	アロ・ローロ・ロ・	0-0-0-0-¢-	0-0-0-0-0	~~~~~	~ K	b/a	~	ひつむつ	うしょうしょう	~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	じしゅうしょう	~
	X	0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	8
202	0	0.000	-0.008	-0.016	-0.025	-0.030	-0.036	-0.044	-0.055	-0.063	-0.064	-0.063	-0.061	-0.052	-0.037	-0.000
	0,2	0.000	0.028	0.041	0.041	0.037	0.031	0.019	0.000	-0.017	-0.026	-0.031	-0.033	-0.033	-0.027	-0.000
	0,4	0.000	0.013	0.023	0.030	0.031	0.030	0.026	0.015	-0.000	-0.010	-0.016	-0.019	-0.023	-0.021	-0.000
	0,5	0.000	0.010	C.018	0.024	0.026	0.027	0.025	0.017	0.004	-0.005	-C.010	-0.014	-0.020	-0.019	-0.000
	0,6	000.00	0.007	C.014	0.020	0.022	0.024	0.024	0.018	0.008	-0.001	-0.006	-0.010	-0.017	-0.017	-0.000
	0,8	000.0	0.005	C.009	0.014	0.016	0.018	0.019	0.018	0.011	0.004	-0.001	-0.004	-C.012	-0.014	-0.000
J J	1 1,2 1,4	0.000 0.000 0.000	0.003 0.002 0.002	0.006 0.005 0.004	0.010 0.007 0.006	0.011 0.009 0.007	0.013 3.010 C.008	0.015 0.012 0.010	0.016 0.014 0.012	0.012 0.012 0.011	0.007	C.003 0.005 C.006	-0.001 0.002 0.004	-0.008 -0.005 -0.003	-0.012 -0.010 -0.008	-0.000 -0.000 -0.000
NN	1,5	0.000	0.002	C.CO3	0.005	0.006	0.007	0.009	0.011	0.011	C.CO9	C.007	C.004	-0.002	-0.008	-0.000
	1,6	0.000	0.001	6.003	0.005	0.005	0.006	0.008	0.010	0.010	C.CO9	0.007	C.005	-0.002	-0.007	-0.000
	1,8	000.0	0.001	C.OO2	0.004	0.004	0.005	0.007	0.009	0.009	C.CO9	0.C07	C.006	-C.000	-0.006	-0.000
and a state	2	0.000	0.001	C.002	0.003	0.004	0.004	0.006	0.007	0.008	0.008	C.CO7	C.006	0.001	-0.005	-0.000
	2,5	0.000	0.001	C.001	0.002	J.002	0.003	0.004	0.005	0.006	0.007	0.007	C.006	0.002	-0.003	-0.000
	3	0.000	0.000	C.001	0.001	0.002	0.002	0.003	0.004	0.005	C.006	C.CO6	O.006	0.003	-0.001	-0.000
0000	4	0.000	0.000	0.000	0.001	0.001	0.001	0.002	0.002	0.003	0.004	C.CO4	0.004	0.004	0.000	-0.000
	5	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.002	0.002	0.003	0.003	0.003	0.003	0.001	-0.000
	1 0	0.000	0.000	0.000	6.000	0.000	0.000	0.000	0.000	0.001	0.001	C.001	0.001	0.002	0.002	-0.000
202	15 20 50	0.000 0.000 0.000	0.000	C.CCC 0.000 C.CCO	C.001 C.000 C.C00	0.001 0.000 0.000	0.001 0.001 0.000	-0.000 -0.000 -0.000								

C		~~~	u a a a a a a a a a a a a a a a a a a a	ひつむしゅ	000000	~~~~~~	nononon	~~ /	b⁄a	~	~~~~~	~~~~~~	~~~~~~	~~~~~~	しつつつ	~
	X	0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	8
~~~~	0	0.000	0.205	0.182	0.163	0,156	0.148	0.138	0.125	0.112	0.102	0.094	0.087	C.068	0.045	0.000
	0,2	0.000	0.014	0.026	0.036	0.040	0.045	C.050	0.057	0.061	0.061	0.059	C.057	0.049	0.035	0.000
	0,4	0.000	0.004	0.007	0.012	0.015	0.018	0.023	0.031	0.038	0.041	0.042	C.042	0.038	0.029	0.000
	0,5	0.000	0.002	0.004	0.008	0.009	0.012	0.016	0.023	0.030	0.034	C.035	0.036	C.034	0.027	0.000
	0,6	0.000	0.001	0.003	0.005	0.006	0.008	0.011	0.017	0.024	0.028	0.030	0.031	0.031	0.025	0.000
	0,8	0.000	0.001	0.001	0.002	0.003	0.004	0.006	0.010	0.016	0.020	0.022	0.024	0.025	0.022	0.000
a N	1 1,2 1,4	0.000 0.000 0.000	0.000 0.000 0.000	0.001 0.000 0.000	0.001 0.001 0.000	0.002 0.001 0.001	0.002 0.001 0.001	0.003 0.002 0.001	0.006 0.004 0.003	0.011 0.007 0.005	0.014 0.010 0.008	0.017 0.013 0.010	C.018 C.014 C.011	C.021 C.017 C.015	0.019 0.017 0.015	0.000 0.000 0.000
2/2	1,5	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.004	0.007	C.009	C.010	0.014	0.014	0.000
	1,6	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.004	0.006	C.007	C.CO9	0.013	0.014	0.000
	1,8	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.003	C.004	O.006	C.007	0.011	0.012	0.000
-	2	0.000	0.000	0.000	0.000	0.000	C.000	0.000	0.001	0.002	0.003	0.005	0.006	0.009	0.011	0.000
	2,5	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.004	0.006	0.009	0.000
	3	0.000	0.000	0.000	0.000	J.000	0.000	0.000	0.000	0.001	0.001	0.002	C.002	0.004	0.007	0.000
0000	4	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	C.001	C.CO2	0.005	0.000
	5	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	000.0	C.000	C.000	C.CO1	0.003	0.000
	10	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	000.0	0.000	C.COO	O.COC	0.001	0.000
Sugar.	15 20 50	0.000 0.000 0.000	0.000	0.000.0 0.000.0 0.000.0	0.000.0 000.0 000.0-	-0.000 0.000 -0.000	0.000 0.000 -0.000	0.000 0.000 -0.000	0.000 0.000 -0.000	0.000 0.000 -0.000	0.000 0.000 -0.000	0.000 0.000	C.COC C.COC C.OCO	C.COC O.COO C.OCO	0.000 0.000 0.000	0.000 0.000 0.000

A,	,	~~~	ちょうしょうしょう	9-0-0-0-0-0	00000¢	しょうしょう	~~~~~~		b⁄a	~	むしゅう	10-0-0-0-0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	9-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	00000	Ś
<u>у</u>		0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	8
	0 0,2 0,4	0.000	0.000 0.001 0.000	0.000 0.005 0.002	0.000 0.013 0.007	0.000 0.017 C.010	0.000 0.022 0.015	0.000 0.028 0.023	0.000 0.037 0.036	0.000 0.044 0.047	0.000 0.047 0.053	0.000 C.048 0.056	C.000 C.049 C.058	C.000 C.051 C.061	0.000 0.052 0.063	0.000 0.052 0.063
	0,5 0,6 0,8	0.000	0.000 0.000 0.000	0.001 C.C01 C.C00	0.005 0.004 0.002	0.008 0.006 0.003	0.012 0.009 0.005	0.020 0.016 0.010	0.033 0.029 0.021	0.045 0.042 0.034	C.052 0.049 C.042	C.056 C.054 C.047	C.058 C.056 C.051	0.062 0.061 C.056	0.063 0.063 0.059	0.064 0.063 0.060
z/2a	1 1,2 1,4	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.001 0.001 0.000	0.002 0.001 0.001	C.003 G.002 O.001	0.007 0.004 0.003	0.015 0.010 0.007	0.027 0.020 0.015	C.035 0.028 0.023	C.040 C.034 C.028	C.044 C.038 C.032	C.C51 C.O45 C.O40	0.054 0.049 C.044	0.055 0.050 0.046
	1,5 1,6 1,8	0.000 0.000 0.000	0.00J 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.091 0.090 0.090	0.001 0.001 0.001	0.002 0.002 0.001	0.006 0.005 0.004	0.013 0.012 0.009	0.020 0.018 0.014	0.026 C.C23 0.019	C.030 C.027 C.023	C.038 C.035 C.031	0.042 0.040 0.036	0.044 0.042 0.039
202	2 2,5 3	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.001 0.000 0.000	0.003 0.001 0.001	0.007 0.004 0.002	C.012 0.007 C.004	0.016 C.C10 C.CC6	0.019 0.013 0.009	C.028 C.021 C.016	0.033 0.027 C.022	0.036 0.030 0.025
	4 5 10	0.000 0.000 0.000	0.000 0.000 -0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	C.COO C.COO O.OOO	0.000 0.000 0.000	0.000 0.000 0.000	0.001 0.000 0.000	0.002 0.001 0.000	C.CO3 C.CO1 C.CCO	C.004 C.C02 C.000	C.009 C.005 C.001	0.015 0.011 0.003	0.019 0.016 0.008
Ŷ	15 20 50	0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	0.000 -0.000 -0.000	0.000 -0.090 -0.000	0.000 0.000 -0.000	0.000 0.000 0.000	0.000	0.000 0.000 0.000	C.COO C.OOO C.COO	0.000 0.000 0.000	C.000 C.000 C.COC	C.COO C.COO C.COO	0.001 0.000 0.000	0.005 0.004 0.002

B,	,	000	しょうしょうしょう	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0-0-0-0-0-	0-0-0-0-0	CrOrOrOrO		b/a	Ø	9~0~0~0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0-0-0-0-0	~~~~~	~~~~~~~	5000000	Ø2
	/	0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	ω
-	0 0,2 0,4	0.000	0.000 0.007 0.001	C.000 C.031 C.007	0.000 0.057 0.022	0.000 0.064 0.030	0.000 0.071 0.041	0.000 0.074 0.055	0.000 0.071 0.067	0.000 0.060 0.067	C.000 C.051 O.061	0.000 0.044 C.055	C.000 C.039 C.050	0.000 0.026 0.034	0.000 0.014 0.019	0.000 0.000 0.000
	0,5	0.000	0.001	C.CO4	0.014	0.020	0.030	0.043	0.059	0.064	C.061	0.056	C.051	0.037	0.021	0.000
	0,6	0.000	0.000	G.O02	0.009	0.014	0.021	0.034	0.051	0.060	C.060	0.056	C.052	0.038	0.022	0.000
	0,8	0.000	0.000	C.CO1	0.004	0.007	0.011	0.020	0.036	0.049	C.053	0.052	C.050	0.039	0.023	0.000
- C	1	0.000	0.000	C.CO1	0.002	0.004	0.006	0.012	0.025	0.039	C.045	0.047	C.046	0.038	0.023	0.000
	1,2	0.000	0.000	0.000	0.001	0.002	0.004	0.008	0.017	0.030	0.038	0.041	0.042	0.036	0.023	0.000
	1,4	0.000	0.000	0.CO0	0.001	0.001	0.002	0.005	0.012	0.023	0.031	0.035	C.037	0.034	0.023	0.000
220	1,5	0.000	0.000	C.COO	0.001	0.001	0.002	0.004	0.010	0.020	0.028	0.032	0.035	0.033	0.023	0.000
	1,6	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.008	0.018	0.025	0.030	0.032	0.032	0.023	0.000
	1,8	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.006	0.013	0.020	0.025	0.028	0.030	0.022	0.000
7	2	0.000	0.000	C.COO	0.000	0.000	0.001	0.002	0.004	0.010	0.016	0.021	C.024	0.028	0.021	0.000
	2,5	U.COÚ	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.006	0.010	0.014	0.017	0.023	0.020	0.000
	3	0.COO	0.000	C.COO	0.000	0.000	0.000	0.000	0.001	0.003	0.006	0.009	0.012	0.018	0.018	0.000
100 A	4	0.000	0.000	000.0	0.000	0.000	0.000	0.000	0.000	0.001	0.002	C.004	0.006	0.011	0.015	0.000
	5	0.000	0.000	000.0	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.003	0.007	0.012	0.000
	1 0	0.000	-0.000	000.0-	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	C.C01	0.004	0.000
	15	0.000	-0.000	-C.COO	-0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000
	20	0.000	0.000	-0.000	-0.000	-0.000	-0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000
	50	0.000	-0.000	0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	0.000	0.000	0.000	0.000	0.000	0.000

C,		aan	たりょりょうしょう	00000	00000	r0r0r0r0.0	red red red red		b/a	~	ndredredred	n Or Or Or Or O	アークーローローロー	o o o o o o	000000	~⊗+
	Y	0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	ω
~~~~	0	0.000	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250
	0,2	0.000	0.002	0.009	0.024	0.031	0.041	0.056	0.077	0.097	0.110	0.119	0.125	0.140	0.153	0.167
	0,4	0.000	0.000	0.001	0.003	0.004	0.007	0.013	0.025	0.041	0.054	0.064	0.072	0.090	0.107	0.126
0000	0,5	0.000	0.000	0.000	0.001	0.001	0.002	0.005	0.013	0.026	0.038	0.047	C.055	0.073	0.091	0.112
	0,6	0.000	-0.000	-0.000	-0.000	0.000	0.000	0.001	0.006	0.016	0.026	0.034	0.041	0.060	0.078	0.101
	0,8	0.000	-0.000	-0.000	-0.000	-0.001	-0.001	-0.001	-0.001	0.004	0.011	0.017	0.023	0.040	0.059	0.083
~ 6	1 1,2 1,4	0.000 0.000 0.000	-0.000 -0.000 -0.000	-0.000 -0.000	-0.000 -0.000 -0.000	-0.001 -0.000 -0.000	-0.001 -0.001 -0.001	-0.002 -0.001 -0.001	-0.002 -0.003 -0.002	-0.001 -0.003 -0.003	0.003 -0.001 -0.003	0.008 0.002 -0.001	0.012 0.006 0.002	0.028 0.019 0.012	0.045 0.035 0.028	0.070 0.060 0.053
2,2	1,5	0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.001	-0.002	-0.003	-0.003	-0.002	0.000	0.010	0.025	0.050
	1,6	0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.001	-0.002	-0.003	-0.003	-0.002	-0.001	0.008	0.022	0.047
	1,8	0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.001	-0.001	-0.003	-0.003	-0.003	-0.002	0.005	0.018	0.042
-	2	0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.001	-0.002	-0.003	-0.003	-0.003	0.003	0.015	0.038
	2,5	0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.001	-0.001	-0.002	-0.003	-0.003	-0.001	0.009	0.031
	3	0.000	-0.000	-0.000	+0.000	-0.000	-0.000	-0.000	-0.000	-0.001	-0.002	-0.002	-0.003	-0.002	0.005	0.026
2000	4	0.000	0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.001	-0.001	-0.002	-0.002	0.001	0.020
	5	0.000	0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.001	-0.001	-0.002	-0.000	0.016
	10	0.000	0.000	C.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.001	0.008
	15	0.000	0.000	0.000	0.000	0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	0.005
	20	0.000	-0.000	0.000	0.000	0.000	0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	0.004
	50	0.000	0.000	-0.000	0.000	0.000	0.000	0.000	0.000	0.000	-0.000	0.000	-0.000	-0.000	-0.000	0.002

A ',	,	000	nononon	0-0-0-0-0-	00000	00000	-0-0-0-0-0		b/a	¢	0-0-0-0-0-	~~~~~	~~~~~~	5-0-0-0-0-0-	~~~~~	Ş
)		0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	8
000	0 0,2 0,4	0.000	-0.037 -0.005 0.000	-0.052 -0.008 0.001	-0.061 -0.010 0.002	-0.063 -0.010 0.003	-0.064 -0.010 0.004	-0.063 -0.007 0.008	-0.055 0.000 0.015	-0.044 0.010 0.024	-0.036 0.018 0.031	-0.030 0.023 0.036	-0.025 0.027 0.039	-0.016 0.037 0.048	-0.008 0.044 0.055	-0.000 0.052 0.063
0000	0,5	0.000	0.001	0.002	0.004	0.005	0.007	0.010	0.017	0.026	0.032	0.037	0.041	0.049	0.056	0.064
	0,6	0.000	0.002	0.003	0.006	0.007	0.009	0.012	0.018	0.026	0.032	0.037	0.041	0.049	0.056	0.063
	0,8	0.000	0.002	0.004	0.006	0.007	0.009	0.012	0.018	0.025	0.030	0.035	0.038	0.046	0.052	0.060
n t	1	0.000	0.002	0.003	0.006	0.007	0.008	0.011	0.016	0.022	0.027	0.031	0.034	0.041	0.048	0.055
	1,2	0.000	0.001	0.003	0.005	0.006	0.007	0.009	0.014	0.019	0.024	0.027	0.030	0.037	0.043	0.050
	1,4	0.000	0.001	0.002	0.004	0.005	0.006	0.008	0.012	0.016	0.020	0.023	0.026	0.032	0.039	0.046
22	1,5	0.000	0.001	0.002	0.004	0.005	0.006	0.007	0.011	0.015	0.019	0.022	C.024	0.031	0.037	0.044
	1,6	0.000	0.001	0.002	0.003	0.004	0.005	0.007	0.010	0.014	0.018	0.020	O.023	0.029	0.035	0.042
	1,8	0.000	0.001	0.002	0.003	0.004	0.004	0.006	0.009	0.012	0.015	0.018	O.020	0.026	0.031	0.039
	2	0.000	0.001	0.002	0.003	0.003	0.004	0.005	0.007	0.011	0.013	0.016	0.018	0.023	0.028	0.036
	2,5	0.000	0.001	0.001	0.002	0.002	0.003	0.004	0.005	0.008	0.010	0.011	C.013	0.018	0.023	0.030
	3	0.000	0.000	0.001	0.001	0.002	0.002	0.003	0.004	0.006	0.007	0.009	0.010	0.014	0.018	0.025
	4	0.000	0.000	0.000	0.001	0.001	0.001	0.002	0.002	0.003	0.004	0.005	C.006	0.009	0.013	0.019
	5	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.002	0.002	0.003	0.004	C.CO4	0.006	0.010	0.016
	10	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	C.CO1	0.002	0.003	0.008
2000	15 20 50	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000	C.001 C.000 C.000	0.001 0.000 0.000	0.002 0.001 0.000	0.005 0.004 0.002

4-2

GIROUD. - Tables pour le calcul des fondations. Tome 2

00

B '		000	しつしつしつ	~~~~~~	9141-01-41 1	0-0-0-0-0	00000		b/a	~	00000	00000	~~~~~~	しっしょうしょう	50000	ð.
y		0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	8
~~~~	0	J.000	0.008	0.016	0.025	0.030	0.036	0.044	0.055	0.063	0.064	0.063	0.061	0.052	0.037	0.000
	0,2	0.000	0.006	0.013	0.020	0.024	0.029	0.036	0.046	0.053	0.055	C.055	0.054	0.047	0.034	0.000
	0,4	0.000	0.005	0.010	0.016	0.019	0.023	0.029	0.038	0.044	0.047	C.C48	0.047	0.042	0.031	0.000
5000	0,5	0.000	0.004	0.019	0.014	0.017	0.020	0.026	0.034	0.041	0.043	0.044	0.044	0.040	0.030	0.000
	0,6	0.000	0.004	0.008	0.012	0.015	0.018	0.023	0.030	0.037	0.040	0.041	0.041	0.037	0.029	0.000
	0,8	0.000	0.003	0.006	C.010	0.012	0.014	0.018	0.024	0.030	0.034	0.035	0.035	0.034	0.026	0.000
E	1	0.000	0.002	0.005	0.008	0.009	0.011	0.014	0.020	0.025	0.028	0.030	0.031	0.030	0.024	0.000
	1,2	0.000	0.002	0.004	0.006	0.007	C.009	0.012	0.016	0.021	0.024	0.026	0.027	0.027	0.022	0.000
	1,4	0.000	0.001	C.C03	0.005	0.006	C.007	0.009	0.013	0.018	0.021	0.022	0.023	0.024	0.021	0.000
2/2	1,5 1,6 1,8	0.000 0.000 0.000	0.001 0.001 0.001	0.003 0.002 0.002	0.004 0.004 0.003	0.005 0.005 0.004	0.006	0.008 0.008 0.006	0.012 0.011 0.009	0.016 0.015 0.013	0.019 0.018 0.015	0.021 0.019 6.017	0.022 0.021 0.018	0.023 0.022 0.020	0.020 0.019 0.018	0.000 0.000 0.000
	2	0.000	0.001	0.002	0.003	C.003	0.004	0.005	0.008	0.011	0.013	0.015	C.016	0.018	0.017	0.000
	2,5	0.000	0.001	C.001	0.002	0.002	0.003	0.004	0.005	0.008	0.010	0.011	0.012	0.014	0.014	0.000
	3	0.000	C.000	0.001	0.001	0.002	0.002	0.003	0.004	0.006	0.007	0.008	0.009	0.012	0.012	0.000
	4	0.000	0.000	0.000	0.001	0.001	0.001	0.002	0.002	0.003	0.004	0.005	C.006	0.008	0.010	0.000
	5	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.002	0.002	0.003	0.004	0.004	C.006	0.008	0.000
	10	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	C.C01	C.CO1	C.002	0.003	0.000
	15 20 50	0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 C.0C0	C.001 C.COO C.COO	0.001 0.000 0.000	0.002 0.001 0.000	0.000 0.000 0.000

.

**

C'	,	anan	and	ひつつつつ	0-0-0-0-Q	00000		~ /	b⁄a	~	ゆゆゆゆつ	~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ひょしょうしゅう	しゅうしょう	<u>o.</u>
		0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	ω
202	0 0,2 0,4	0.000	0.045 0.011 0.005	C.C68 C.J21 C.O09	0.087 0.031 0.014	0.094 0.035 0.017	0.102 0.041 0.020	0.112 0.047 0.024	0.125 0.057 0.031	0.138 0.067 0.038	0.148 C.075 0.045	C.156 0.082 0.050	C.163 0.088 C.055	0.182 0.104 0.069	0.205 0.125 0.087	0.250 0.167 0.126
	0,5 0,6 0,8	0.000	0.003 0.002 0.001	0.006 0.004 0.002	0.010 0.007 0.004	0.012 0.009 0.005	0.014 0.015 0.006	0.018 0.013 0.007	0.023 0.017 0.010	0.029 0.023 0.014	C.035 0.028 C.018	C.C40 C.O32 C.O21	C.044 C.036 O.025	0.057 0.048 C.C35	0.075 0.064 0.049	0.112 0.100 0.083
9	1 1,2 1,4	0.000 0.000 0.000	0.001 0.000 0.000	C.CO1 C.CO1 C.CO0	0.002 0.001 0.001	0.003 J.J02 0.001	0.003 0.002 0.001	0.004 0.003 0.002	0.006 0.004 0.003	0.009 0.036 0.004	C.012 G.008 0.006	C.C15 C.C10 C.C07	C.017 C.012 C.009	0.026 0.019 0.015	0.038 0.030 0.025	0.070 0.060 0.053
N N	1,5 1,6 1,8	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.001 0.001 0.000	0.001 0.001 0.000	0.001 0.001 0.001	0.001 0.001 0.001	0.002 0.002 0.001	0.003 0.003 0.002	C.005 J.004 C.003	C.CO6 0.CO5 0.CO4	C.CO8 0.007 C.CO5	0.013 0.012 0.009	0.022 0.020 0.017	0.050 0.047 0.042
200	2 2,5 3	0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.001 0.000 0.000	0.001 0.00J 0.00J	0.001 0.001 0.000	0.002 0.001 0.001	C.003 0.002 C.C01	C.CO4 0.002 C.OO1	0.007 0.004 0.003	0.014 0.010 0.007	0.038 0.031 0.026
	4 5 1 0	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.00J 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	C.COO C.COO C.COO	0.001 0.001 C.000	0.004 0.002 0.000	0.020 0.016 0.008
\$ \$	15 20 50	0.000	0.000.0	000.0 000.0 000.0-	0.000 0.000 -0.000	0.000 0.000 -0.000	0.000 660.0 600.0-	0.000 0.000 0.000	0.000 0.000 -0.000	0.000 0.000 -0.000	0.000 0.000 0.000	0.000.0 0.000 0.000	C.COU 0.000 -0.000	0.000.0 0.000 -C.000	0.000 0.000 0.000	0.005 0.004 0.002

10
5

A	7	0.00	~~~~~~	70-0-0-0-	orororo	~~~~	×0~0~0~0		5/a	~	9-9-9-9-9-9-	こしょしょしょう	rananana	510-10-10-10-10-10-10-10-10-10-10-10-10-1	600000	<i>∾</i> ×
		0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	ω
~~~~	0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0,2	0.000	0.014	0.022	0.027	0.028	0.029	0.030	0.030	0.031	0.031	0.031	0.031	0.031	0.031	0.031
	0,4	0.000	0.015	0.027	0.038	0.042	0.046	0.050	0.053	0.054	0.055	0.055	0.055	0.055	0.055	0.055
	0,5	0.000	0.014	0.027	0.040	0.044	0.050	0.056	0.061	0.063	0.063	C.064	0.064	C.064	0.064	0.064
	0,6	0.000	0.014	0.026	0.039	0.045	0.051	0.058	0.065	0.069	0.070	0.070	0.070	0.070	0.070	0.070
	0,8	0.000	0.012	0.023	0.036	0.042	0.049	0.059	0.069	0.075	0.076	0.077	0.077	0.078	0.078	0.078
9	1	0.000	0.010	0.020	0.032	0.037	0.045	0.054	0.067	0.075	0.077	0.079	0.079	0.079	0.080	0.080
	1,2	0.000	0.009	0.017	0.028	0.032	0.039	0.049	0.061	0.071	0.075	0.077	C.077	0.078	0.078	0.078
	1,4	0.000	0.007	0.014	0.024	0.028	0.034	0.042	0.055	0.066	0.071	0.073	0.074	0.075	0.075	0.075
2/2	1,5	0.000	0.007	0.013	0.022	0.026	0.031	0.040	0.052	0.063	0.068	0.071	0.072	0.073	0.073	0.073
	1,6	0.000	0.006	0.012	0.020	0.024	0.029	0.037	0.049	0.060	0.066	0.068	0.070	0.071	0.072	0.072
	1,8	0.000	0.005	0.010	0.017	0.020	0.025	0.032	0.043	0.055	0.060	0.064	0.065	0.067	0.068	0.068
-	2	0.000	0.005	0.009	0.015	0.018	0.022	0.028	0.038	0.049	0.055	0.059	0.061	0.063	0.064	0.064
	2,5	0.000	0.003	0.006	0.010	0.012	0.015	0.020	0.028	0.038	0.044	0.048	0.050	0.054	0.055	0.055
	3	0.000	0.002	0.005	0.008	0.009	0.011	0.015	0.021	0.029	0.035	0.039	0.042	0.046	0.048	0.048
	4	0.000	0.001	0.003	0.005	0.005	0.007	0.009	0.013	0.019	0.023	0.027	0.029	0.035	0.037	0.037
	5	0.000	0.001	0.002	0.003	0.004	0.005	0.006	0.009	0.013	0.016	0.019	0.021	0.027	0.030	0.031
	1 0	0.000	0.000	0.000	0.001	0.001	0.001	0.002	0.002	0.003	0.005	0.006	0.007	0.010	0.014	0.016
-	15	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.002	0.002	0.003	0.003	0.005	0.008	0.011
	20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.002	0.003	0.005	0.008
	50	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.003

(Voir Graphique p. 99)
B		\$\\$\\$	DDDDD	a da	しょうしょうしょう	しつううう	Provono de	~ K	b/a	Ś	りょうりょうょう	ひゅうゅう	~~~~~~	しょうしょうしょう	どうしょうしょう	₽ ×
Z		0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	8
	0 0,2 0,4	0.000	0.000 0.064 0.037	0.000 0.079 0.063	0.000 0.070 0.077	0.000 0.064 0.079	0.000 0.055 0.076	0.000 0.044 0.069	0.000 0.030 0.053	0.000 0.021 0.038	0.000 0.016 0.029	0.000 0.012 0.023	0.000 C.010 C.02C	0.000 0.006 0.012	0.000 0.003 0.006	0.000 0.000 0.000
	0,5	0.000	0.030	0.054	0.072	0.076	0.077	0.074	0.061	0.045	0.035	0.028	0.024	0.014	0.007	0.000
	0,6	0.000	0.025	0.046	0.065	0.071	0.075	0.075	0.065	0.050	0.039	0.032	0.027	0.016	0.008	0.000
	0,8	0.000	0.018	0.035	0.052	0.059	0.066	0.071	0.069	0.057	0.046	0.038	0.032	0.020	0.010	0.000
the second secon	1	C.000	0.014	0.027	0.042	0.048	0.055	0.063	0.067	0.059	C.050	0.042	0.036	0.022	0.011	0.000
	1,2	0.000	0.011	0.021	0.034	0.039	0.046	0.055	0.061	0.059	0.051	C.044	0.038	0.024	0.012	0.000
	1,4	0.000	0.009	0.017	0.028	0.032	0.038	0.047	0.055	0.056	0.051	0.045	0.039	0.025	0.013	0.000
20	1,5	0.000	0.008	0.016	0.025	0.029	0.035	0.043	0.052	0.054	C.050	0.045	0.040	0.026	0.013	0.000
	1,6	0.000	0.007	0.014	0.023	0.027	0.032	0.040	0.049	0.052	0.049	C.045	0.040	0.026	0.013	0.000
	1,8	0.000	0.006	0.012	0.019	0.022	0.027	0.034	0.043	0.049	0.047	0.044	0.039	0.027	0.014	0.000
	2	0.000	0.005	0.010	0.016	0.019	0.023	0.029	0.038	0.044	0.045	0.042	0.039	0.027	0.014	0.000
	2,5	0.000	0.003	0.007	0.011	0.013	0.016	0.021	0.028	0.035	0.038	0.037	0.036	C.027	0.015	0.000
	3	0.000	0.002	0.005	0.008	0.010	0.012	0.015	0.021	0.028	0.031	0.032	0.032	0.026	0.015	0.000
000	4	0.000	0.001	0.003	0.005	0.006	0.007	0.009	0.013	0.018	0.022	0.024	0.025	0.023	0.015	0.000
	5	0.000	0.001	0.002	0.003	0.004	0.005	0.006	0.009	0.012	0.015	C.018	0.019	0.020	0.014	0.000
	10	0.000	0.000	0.000	0.001	0.001	0.001	0.002	0.002	0.003	0.005	C.005	0.006	0.009	0.010	0.000
	15	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.002	0.002	0.003	0.003	0.005	0.007	0.000
	20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.002	0.003	0.005	0.000
	50	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	6.000	0.000	0.001	0.000

Bz

0,1

C.	7	000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	しつしつしょう	0-0-0-0-0-0-	~~~~	rener en		b/a	Ø	00000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	くしょうしょう	アリーク・ク・ク・ク・	60000	₽-
	-	0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	ω
-	0 0,2 0,4	0.000 0.000 0.000	0.250 0.060 0.024	0.250 0.103 0.046	0.250 0.137 0.071	0.250 0.148 0.082	0.250 0.160 0.095	0.250 0.174 0.112	0.250 0.188 0.134	0.250 0.198 0.151	0.250 0.203 0.160	0.250 0.206 0.166	0.250 0.208 0.170	0.250 0.212 0.178	0.250 0.215 0.184	0.250 0.219 0.189
	0,5 0,6 0,8	0.000	0.017 0.012 0.007	0.033 0.024 0.013	0.052 0.039 0.022	0.061 0.046 0.026	0.073 0.056 0.033	0.089 0.070 0.044	0.111 0.092 0.062	0.130 0.112 0.082	0.141 0.124 0.095	0.148 0.132 0.104	0.153 0.137 0.110	0.162 0.148 0.123	0.169 0.156 0.133	0.176 0.164 0.143
6	1 1,2 1,4	0.000 0.000 0.000	0.004 0.002 0.001	0.008 0.005 0.003	0.013 0.008 0.005	0.016 0.010 0.006	0.020 0.013 0.008	0.028 0.018 0.012	0.042 0.029 0.020	0.060 0.044 0.032	0.073 0.056 0.043	0.082 0.065 0.051	0.088 0.071 0.058	0.103 0.086 0.073	0.114 0.098 0.086	0.125 0.111 0.099
22	1,5 1,6 1,8	0.000 0.000 0.000	0.001 0.001 0.001	0.002 0.002 0.001	0.004 0.003 0.002	0.005 0.004 0.003	0.007 0.006 0.004	0.010 0.008 0.006	0.017 0.014 0.010	0.028 0.024 0.018	0.038 0.033 0.026	0.046 0.041 C.033	0.052 0.047 0.039	0.068 0.062 0.054	0.080 0.075 0.067	0.094 0.089 0.081
	2 2,5 3	0.000 0.000 0.000	0.000 0.000 0.000	0.001 0.000 0.000	0.002 0.001 0.000	0.002 0.001 0.000	0.003 0.001 0.001	0.004 0.002 0.001	0.007 0.004 0.002	0.013 0.007 0.004	0.020 0.011 0.007	0.026 0.016 0.010	0.032 0.020 0.013	0.046 0.033 0.024	0.060 0.046 0.036	0.074 0.061 0.051
~~~~	4 5 10	0.000	0.000 0.000 0.000	C.COO 0.000 0.000	0.000 0.000 C.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.001 0.000 0.000	0.001 0.001 0.000	0.003 0.001 0.000	0.004 0.002 0.000	0.006 0.003 0.000	0.013 0.008 0.001	0.024 0.017 0.004	0.039 0.031 0.016
	15 20 50	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000	0.000 0.000 0.000	C.000 C.000 C.000	0.000 0.000 0.000	0.001 0.000 0.000	0.011 0.008 0.003

4-2

A,		0.00	~~~~~~	20.000	0.0.0.0.0	00000	~~~~~		b⁄a	\$		~~~~	~~~~~	50.000	りょうりょう	\$
X	y	0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	8
200	0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0,2	0.000	0.003	0.010	0.019	0.022	0.027	0.032	0.037	0.040	0.041	0.042	0.042	0.042	0.042	0.042
	0,4	0.000	0.002	0.006	0.013	0.016	0.021	0.028	0.036	0.042	0.044	0.045	0.045	0.046	0.046	0.046
	0,5	0.000	0.001	0.004	0.010	0.013	0.017	0.024	0.033	0.039	0.041	0.042	C.043	0.044	0.044	0.044
	0,6	0.000	0.001	0.003	0.008	0.010	0.014	0.020	0.029	0.035	0.038	0.039	0.040	0.040	0.041	0.041
	0,8	0.000	0.000	0.002	0.005	0.006	0.009	0.014	0.021	0.027	0.030	0.032	0.033	0.034	0.034	0.034
E	1	0.000	0:000	0.001	0.003	0.004	0.006	0.009	0.015	0.021	0.024	0.025	0.026	0.027	0.028	0.028
	1,2	0.000	0.000	0.001	0.002	0.003	0.004	0.006	0.010	0.015	0.018	0.020	0.021	0.022	0.023	0.023
	1,4	0.000	0.000	0.000	0.001	0.002	0.002	0.004	0.007	0.011	0.014	0.016	0.017	0.018	0.018	0.019
2.	1,5	0.000	0.000	0.000	0.001	0.001	0.002	0.003	0.006	0.010	0.012	0.014	0.015	0.016	0.017	0.017
	1,6	0.000	0.000	0.000	0.001	0.001	0.002	0.003	0.005	0.009	0.011	0.012	0.013	0.015	0.015	0.015
	1,8	0.000	0.000	0.000	0.001	0.001	0.001	0.002	0.004	0.006	0.008	0.010	0.011	0.012	0.013	0.013
	2 2,5 3	0.000 0.000 0.000	0.000 0.000 0.000	0.000	0.000 0.000 0.000	0.001 0.000 0.000	0.001 0.000 0.000	0.001 0.001 0.000	0.003 0.001 0.001	0.005 0.003 0.001	0.007 0.004 0.002	0.008 0.005 0.003	0.009 0.005 0.003	0.010 0.007 0.005	0.011 0.007 0.005	0.011 0.007 0.005
	4	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.002	0.002	0.003	0.003
	5	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.002	0.002
	1 0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001
	15 20 50	0.000 0.000 0.000	-0.000 0.000 -0.000	0.000 -0.000 0.000	0.000 -0.000 -0.000	0.000 0.000 -0.000	0.000 0.000 -0.000	0.000 0.000 -0.000	0.000	0.000 0.000 -0.000	0.000 0.000 0.000	0.000 0.000 -0.000	C.000 O.000 C.000	0.000	0.000 0.000 0.000	0.000 0.000 0.000

1. 1

B		000	2000000	しょうりょうしょう	0-0-0-0-Q	ゆしゅしょう	00000		b⁄a	~	9-9-9-9-9-9-	~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	510-10-10-10-10-10-10-10-10-10-10-10-10-1	0-0-0-0-0-	≫
	(Y	0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	8
-	0 0,2 0,4	0.000	0.000 0.011 0.003	0.000 0.027 0.010	0.000 0.040 0.021	0.000 0.042 0.025	0.000 0.044 0.030	0.000 0.043 0.035	0.000 0.037 0.036	0.000 0.029 0.032	0.000 0.023 0.027	0.000 0.019 0.023	0.000 0.016 0.019	0.000 0.010 0.012	0.000 0.005 0.006	0.000 0.000 0.000
-	0,5 0,6 0,8	0.000 0.000 0.000	0.002 0.001 0.001	0.007 0.005 0.002	0.015 0.011 C.006	0.019 0.014 0.008	0.024 0.018 0.011	0.029 0.024 0.015	0.033 0.029 0.021	0.030 0.028 0.023	0.026 0.025 0.021	0.022 0.021 0.019	C.019 O.019 C.017	C.012 0.012 0.011	0.006 0.006 0.006	0.000 0.000 0.000
B	1 1,2 1,4	0.000 0.000 0.000	0.000 0.000 0.000	0.001 0.001 0.000	0.003 0.002 0.001	0.005 0.003 0.002	0.007 0.004 0.003	0.010 0.006 0.004	0.015 0.010 0.007	0.018 0.014 0.010	0.017 0.014 0.011	0.016 0.014 0.011	C.015 C.013 O.011	0.010 0.009 0.008	0.005 0.005 0.004	0.000 0.000 0.000
NN	1,5 1,6 1,8	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.001 0.001 0.001	0.001 0.001 0.001	0.002 0.002 0.001	0.004 0.003 0.002	0.006 0.005 0.004	0.009 0.008 0.006	0.010 0.009 0.007	0.010 0.009 0.008	0.010 0.009 0.008	C.008 0.007 0.006	0.004 0.004 0.004	0.000 0.000 0.000
	2 2,5 3	0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.001 0.000 0.000	0.001 0.000 0.000	0.001 0.001 0.000	0.003 0.001 0.001	0.005 0.002 0.001	0.006 0.003 0.002	C.CO6 0.004 0.003	0.006 0.004 C.003	0.006 0.004 0.003	0.003 0.003 0.002	0.000 0.000 0.000
0000	4 5 1 0	0.000	0.000 0.000 -0.000	0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.001 0.000 0.000	0.001 0.000 0.000	0.001 0.001 0.000	0.001 0.001 0.000	0.002 0.001 0.000	0.002 0.001 0.000	0.000 0.000 0.000
	15 20 50	0.000 0.000 0.000	-0.000 -0.000 -0.000	-0.000 -0.000 -0.000	0.000 -0.000 -0.000	0.000 -0.000 -0.000	0.000 0.000 -0.000	0.000 0.000 0.000	0.000	0.000 0.000 -0.000	0.000 0.000 0.000	0.000	C.COO C.COO C.COO	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000

2



C.		000	~~~~~~	re contraction	00000	00000	00000	~ 1	b/a	Ś	00000	<u>~~~~</u>	~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	かいしょうしょう	8
Ξy	Z	0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	8
	0	0.000	0.159	0.159	0.159	0.159	0.159	0.159	0.159	0.159	0.159	0.159	0.159	0.159	0.159	0.159
	0,2	0.000	0.008	0.025	0.046	0.054	0.064	0.076	0.091	0.103	0.109	0.113	0.116	0.122	0.126	0.130
	0,4	0.000	0.001	0.005	0.013	0.017	0.023	0.032	0.048	0.063	0.073	0.079	0.083	0.093	0.100	0.108
	0,5	0.000	0.001	0.002	0.007	0.009	0.013	0.020	0.034	0.049	0.058	0.065	0.070	0.081	0.090	0.098
	0,6	0.000	0.000	0.001	0.003	0.005	0.007	0.012	0.023	0.037	0.047	0.054	0.059	0.071	0.080	0.090
	0,8	0.000	0.000	0.000	0.001	0.001	0.002	0.004	0.010	0.020	0.029	0.036	0.042	0.054	0.065	0.076
C	1	0.000	-0.000	-0.000	-0.000	-0.000	-0.000	0.000	0.003	0.010	0.018	0.024	0.029	0.042	0.054	0.066
	1,2	0.000	-0.000	-0.000	-0.001	-0.001	-0.001	-0.001	0.000	0.004	0.010	0.016	0.020	0.033	0.045	0.058
	1,4	0.000	-0.000	-0.000	-0.001	-0.001	-0.001	-0.001	-0.001	0.001	0.005	0.010	0.014	0.026	0.037	0.051
20	1,5	0.000	-0.000	-0.000	-0.000	-0.001	-0.001	-0.001	-0.002	0.000	0.004	0.007	C.011	0.023	0.034	0.048
	1,6	0.000	-0.000	-0.000	-0.000	-0.001	-0.001	-0.001	-0.002	-0.001	0.002	0.006	C.009	0.020	0.032	0.046
	1,8	0.000	-0.000	-0.000	-0.000	-0.001	-0.001	-0.001	-0.002	-0.001	0.000	0.003	C.006	0.016	0.027	0.041
	2	0.000	-0.000	-0.000	-0.000	-0.000	-0.001	-0.001	-0.002	-0.002	-0.001	0.001	0.004	0.012	0.023	0.038
	2,5	0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.001	-0.001	-0.002	-0.002	-0.001	0.000	0.006	0.016	0.031
	3	0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.001	-0.002	-0.002	-0.002	-0.001	0.003	0.012	0.026
000	4	0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.001	-0.001	-0.001	-0.002	0.000	0.006	0.020
	5	0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.001	-0.001	-0.001	-0.001	-0.001	0.003	0.016
	10	0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.001	-0.000	0.008
	15	0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	0.005
	20	0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	0.004
	50	0.000	-0.000	-C.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	0.002

4-2

Chapitre  14 

<b>A</b> ′		~~~	とりようしょう	しつつゆゆ	00004	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		b⁄a	~	うしんてん	n Ortonovio	9.09.09.09.09.09. 9.09.09.09.09.09.09.09.09.09.09.09.09.09	610-0-0-0-0	60000	œ
	y	0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	8
~	0 0,2 0,4	0.000	0.023 0.002 0.001	6.044 0.009 0.003	0.066 0.019 0.008	0.076 0.024 0.010	0.088 0.031 0.014	0.104 0.042 0.021	0.125 0.057 0.031	0.140 0.069 0.040	C.148 0.075 C.045	0.151 0.078 C.048	C.154 C.080 C.049	0.157 0.084 C.052	0.159 0.085 0.054	0.159 0.086 0.054
-	D,5 D,6 0,8	0.000 0.000 0.000	0.001 0.000 0.000	0.002 0.001 0.001	0.005 0.004 0.002	0.007 0.005 0.003	0.010 0.007 0.004	0.015 0.011 0.006	0.023 0.017 0.010	0.031 0.024 0.015	C.035 0.028 0.018	C.C38 C.O31 C.O20	C.C4C 0.032 0.022	0.042 0.035 0.024	0.044 0.036 0.025	0.044 0.037 0.026
9	1 1,2 1,4	0.000 0.000 0.000	0.000 0.000 0.000	0.000	0.001 0.001 0.000	0.001 0.001 0.001	0.002 0.001 0.001	0.003 0.002 0.001	0.006 0.004 0.003	0.010 0.006 0.004	0.012 C.008 C.006	C.014 0.010 0.007	C.C15 C.O11 C.O08	0.017 0.013 0.010	0.018 0.014 0.011	0.019 0.014 0.011
N N	1,5 1,6 1,8	0.000 0.000 0.000	0.000	C.COO C.000 O.COO	0.000 0.000 0.000	0.000 0.000 0.000	0.001 0.001 0.000	0.001 0.001 0.001	0.002 0.002 0.001	0.004 0.003 0.002	C.CO5 0.004 0.003	C.CO6 0.CO5 0.CO4	C.CO7 C.CO6 C.OO4	0.008 0.007 C.006	0.009 0.008 0.007	0.010 0.009 0.007
-	2 2,5 3	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.001 0.000 0.000	0.002 0.001 0.000	0.002 0.001 0.001	C.003 0.002 C.CO1	C.CO3 C.OO2 C.OO1	0.005 0.003 0.002	0.006 0.004 0.002	0.006 0.004 0.003
	4 5 10	0.000.000.000.0000.0000.0000.0000.0000.0000	0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	C.0CC C.000 C.000	C.COC C.COO C.OOO	0.001 0.000 0.000	0.001 0.001 0.000	0.002 0.001 0.000
	15 20 50	0.000.000.000.000.0000.0000.0000.0000.0000	0.000 0.000 0.000	0.000	0.000 0.000 0.000 0.000	0.000 0.000 -0.000	0.000 0.000 000.0-	0.000 0.000 -0.000	0.000 0.000 -0.000	0.000 0.000 -0.000	0.000 0.000 -C.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 -0.000	C.CCO 0.COO 0.COO	0.000 0.000 0.000

<b>B</b> '	,	000	000000	しょうしょう	ひゆゆゆゆ	00000	~~~~~~		b⁄a	Ø	~~~~~	うしょうようしょう	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~	500000	8
	<i>(Y</i>	0	0,1	0,2	1/3	0,4	0,5	2/3	1	5.ر1	2	2,5	3	5	10	ω
-	0	0.000	0.159	0.157	0.154	0.151	0.148	0.140	0.125	0.104	0.088	C.076	C.066	0.044	0.023	0.000
	0,2	0.000	0.006	C.C17	0.032	0.038	0.045	0.052	0.057	0.054	0.049	C.044	C.039	6.627	0.015	0.000
	0,4	0.000	0.001	C.C05	0.011	0.014	0.018	0.024	0.031	0.033	0.031	0.029	C.027	6.019	0.011	0.000
	0,5	0.000	6.001	C.003	0.007	0.009	0.012	0.017	0.023	0.026	0.026	C.024	C.022	C.C17	0.010	0.000
	0,6	0.000	6.000	0.C02	0.004	0.006	0.008	0.012	0.017	0.021	0.021	C.020	C.019	C.O14	0.009	0.000
	0,8	0.000	0.000	C.C01	0.0J2	0.003	0.004	J.006	0.010	0.013	0.014	O.014	C.014	O.O11	0.007	0.000
E	1	0.000	0.000	0.010	0.001	0.002	0.002	0.004	0.006	0.009	0.010	0.010	C.010	0.009	0.006	0.000
	1,2	0.000	0.000	0.000	0.001	0.001	0.001	0.002	0.004	0.006	0.007	C.008	C.C08	0.007	0.005	0.000
	1,4	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.003	0.004	0.005	0.006	C.C06	0.006	0.004	0.000
NN	1,5	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.003	0.004	0.CO5	C.CO5	C.005	0.004	0.000
	1,6	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.003	0.004	C.OO4	C.CO5	C.005	0.003	0.000
	1,8	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.003	C.CO3	0.CO4	C.004	0.003	0.000
-	2	0.000	0.000	C.COO	0.000	0.000	0.000	0.000	0.001	0.002	0.002	0.003	0.003	C.CO3	0.002	0.000
	2,5	0.000	0.000	C.COO	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	C.002	C.OO2	0.002	0.000
	3	0.000	0.000	C.COO	0.000	0.010	0.000	0.000	0.000	0.000	0.001	0.001	C.CO1	O.OO1	0.001	0.000
0000	4	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	C.000	C.001	0.001	0.000
	5	J.000	0.000	0.000	0.000	J.000	0.000	0.000	0.000	0.000	0.000	0.000	C.C00	C.COO	0.001	0.000
	1 0	0.00	0.000	0.000	0.000	9.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	O.000	0.000	0.000
	15 20 50	0.000 0.000 0.000	-0.000 0.000 -0.000	0.000 0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 -0.000	0.000 0.000 -0.000	0.000 0.000 -3.000	0.000 0.000 -0.000	0.000 0.000 -0.000	0.000	0.000 0.000 -0.000	0.000 0.000 0.000	0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000

Section 4-2



4-2

0.001 0.000 INFINI 0.092 0.043 0.032 0.025 0.016 0.0011 0.008 0.006 0.005 0.005 0.004 0.003 0.002 0.001 8 0000-0-0.022 0.016 0.005 0.003 0.002 0000-0-000 000.00-1NF1N1 0.077 0.032 0.002 0.001 0.001 10 -0.000 -0.000.0--0°000 -0°000 -0 0.064 0.023 0.015 0.010 0.004 0.002 -0.001 5 0.050 0.050 -0.001 -0.000 -0.000 0.008 -0.001 -0.001 c -0.002 -0.002 -0.002 0000.01 0000.0-0.005 0.002 -0.001 -0.001 -0.001 -0.001 -0.000 0.011 INFINI 2,5 0.002 -0.000 -0.002 -0.002 -0.002 -0.002 -0.001 -0.001 -0.000.0-0000.0 INFINI 0.037 0.007 2 -0.001 -0.002 INFINI 0.028 0.003 -0.003 -0.002 -0.002 -0.001 -0.001 0000-0-0000-0-1,5 b/a INFINI 0.018 -0.001 -0.003 -0.001 -0.001 -0.001 -0.000 -0.000.0--0.000 --0.003 INFINI 0.010 -0.002 0000.0-0000.0-0000-0--0.001 0000-0-000 2/3 -0.000 -0.000 -0.002 -0.002 -0.001 -0.000 0000.0-INFINI 0.007 -0.002 0,5 INFINI 0.005 -0.002 -0.002 -0.002 -0.001 -0.001 -0.000 -0.000--0.000 -0.000 -0.000 0,4 000.01 INFINI 0.004 -0.001 -0.001 -0.000 000.000 -0.000 0.000 -0.000 0.000 <u>~</u> -0.001 -0.0000--0.0000--0.000 -0.000 -0.0000-0-0.002 INFINI 0,2 0000.0--0.0000--0.000--0.000 -0.000 -0.000-0-000 0.000 INFINI 0,1 0.000 0.000 0.000 0.000.0 0.000 0.000.0 0.000.0 0 1,2 1,5 1,6 1,8 1,8 3 3 3 4 4 10 10 0,2 0,4 15020 × ez/z

	Z	~~~	~~~~~~	100000	7+D+D-D+D+	0-0-0-0-0	00000	~ 1	b/a	~~~	onononon	0-0-0-0	~~~~	n an	vo o o o o	0-
		0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	ω
2000	0 0,2 0,4	0.000	0.000 0.003 0.002	0.000 0.009 0.006	0.000 0.015 0.014	0.000 0.017 0.017	0.000 0.019 0.022	0.000 0.022 0.027	0.000 0.024 0.034	0.000 0.025 0.037	0.000 0.025 0.039	0.000 0.025 0.039	0.000 0.025 0.040	0.000 0.026 0.040	0.000 0.026 0.040	0.000 0.026 0.040
0000	0,5	0.000	0.001	0.005	0.012	0.015	0.020	0.027	0.035	0.040	0.042	0.043	0.043	0.044	0.044	0.044
	0,6	0.000	0.001	0.004	0.010	0.013	0.018	0.025	0.035	0.041	0.044	0.045	0.045	0.046	0.046	0.046
	0,8	0.000	0.001	0.003	0.007	0.010	0.014	0.021	0.031	0.040	0.043	0.045	0.046	0.047	0.048	0.048
G	1	0.000	0.001	0.002	0.005	0.007	0.010	0.016	0.026	0.036	0.040	0.043	0.044	0.046	0.047	0.047
	1,2	0.000	0.000	0.001	0.004	0.005	0.008	0.012	0.021	0.031	0.036	0.039	0.041	0.043	0.044	0.044
	1,4	0.000	0.000	0.001	0.003	0.004	0.006	0.009	0.017	0.026	0.032	0.035	0.037	0.040	0.041	0.042
2/2	1,5	0.000	0.000	0.001	0.002	0.003	0.005	0.008	0.015	0.024	0.030	0.033	0.036	0.039	0.040	0.040
	1,6	0.000	0.000	0.001	0.002	0.003	0.004	0.007	0.014	0.022	0.028	0.032	0.034	0.037	0.039	0.039
	1,8	0.000	0.000	0.001	0.002	0.002	0.003	0.006	0.011	0.018	0.024	0.028	0.030	0.034	0.036	0.036
-	2	0.000	0.000	0.000	0.001	0.002	0.003	0.004	0.009	0.015	0.021	0.025	0.027	0.032	0.033	0.034
	2,5	0.000	0.000	0.000	0.001	0.001	0.002	0.003	0.005	0.010	0.014	0.018	0.020	0.026	0.028	0.028
	3	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.003	0.007	0.010	0.013	0.015	0.021	0.024	0.025
000	4 5 10	0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.001 0.000 0.000	0.002 0.001 0.000	0.003 0.002 0.000	0.005 0.003 0.000	0.007 0.004 0.001	0.009 0.006 0.001	0.014 0.010 0.002	0.018 0.014 0.005	0.019 0.015 0.008
	15	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	C.COO	0.001	0.002	0.005
	20	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	C.COO	0.000	0.001	0.004
	50	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	C.OOO	0.000	0.000	0.002

B	1/7		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ゆうゆう	~~~~~~~	~~~~~	0-0-0-0-0	<i>00000</i>	~ 1	b/a	<i>~</i>	りょうりょうょう	0-0-0-0-0	~~~~	~~~~~~	rooor	•
	y Z		0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	8
	0	0 , 2 , 4	0.000	0.000 0.020 0.006	0.000 0.045 0.020	0.000 0.056 0.038	0.000 0.056 0.045	0.000 0.054 0.051	0.000 0.047 0.055	0.000 0.037 0.051	0.000 0.027 0.042	0.000 0.021 0.034	0.000 0.017 0.028	0.000 0.014 0.024	0.000 0.009 0.015	0.000 0.004 0.008	0.000 0.000 0.000
	0 0 0	,5 ,6 ,8	0.000 0.000 0.000	0.004 0.003 0.002	0.014 0.010 0.006	0.029 0.023 0.014	0.036 0.029 0.019	0.044 0.037 0.025	0.051 0.046 0.035	0.053 0.051 0.045	0.045 0.047 0.047	0.038 C.040 C.042	0.032 0.035 0.037	0.027 0.030 0.033	0.017 0.019 0.022	0.009 0.010 0.011	0.000 0.000 0.000
coir	1	1 , 2 , 4	0.000	0.001 0.001 0.000	0.004 0.002 0.002	0.009 0.006 0.004	0.012 0.008 0.006	0.018 0.012 0.009	0.026 0.019 0.014	0.037 0.030 0.024	0.043 0.038 0.033	0.041 0.039 0.035	0.038 0.037 0.035	0.034 0.034 0.033	0.023 0.024 0.024	0.012 0.013 0.013	0.000 0.000 0.000
= /2a Z /		,5 ,6 ,8	0.000 0.000 0.000	0.000 0.000 0.000	0.001 0.001 0.001	0.004 0.003 0.002	0.005 0.004 0.003	0.008 0.007 0.005	0.012 0.011 0.008	0.021 0.019 0.015	0.030 0.028 0.024	0.034 0.032 0.028	0.034 0.032 0.030	0.032 0.031 0.029	0.024 0.024 0.024	0.014 0.014 0.014	0.000 0.000 0.000
3	2	2 ,5 3	0.000 0.000 0.000	0.000 0.000 0.000	0.001 0.000 0.000	0.002 0.001 0.001	0.003 0.001 0.001	0.004 0.002 0.001	0.006 0.004 0.002	0.012 0.007 0.005	0.020 0.013 0.009	0.025 0.018 0.013	0.027 0.021 0.016	0.027 0.022 0.018	0.023 0.021 0.019	0.014 0.014 0.013	0.000 0.000 0.000
	1	4 5 1 0	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.001 0.000 0.000	0.001 0.001 0.000	0.002 0.001 0.000	0.004 0.002 0.000	0.007 0.004 0.001	0.009 0.006 0.001	0.011 0.007 0.001	0.015 0.011 0.003	0.012 0.011 0.006	0.000 0.000 0.000
	1	15 20 50	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	C.COO O.COO O.COO	0.001 0.000 0.000	0.003 0.001 0.000	0.000 0.000 0.000



.

C.		000	a a a a a a a a a a a a a a a a a a a	9090900	0-0-0-0-0-0-	000000	UNDO	~ k	b/a	Ś	0~0~0~0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- COCON	~~~~~	0-0-0-0-0-	01
X	y	0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	8
and the second	0	0.000	0.159	0.159	0.159	0.159	0.159	0.159	0.159	0.159	0.159	0.159	0.159	0.159	0.159	0.159
	0,2	0.000	0.003	0.009	0.017	0.021	0.027	0.034	0.045	0.055	0.062	0.066	0.069	0.075	0.080	0.086
	0,4	0.000	-0.000	0.000	0.001	0.001	0.003	0.005	0.012	0.020	0.027	0.031	0.035	0.042	0.048	0.054
	0,5	0.000	-0.000	-0.001	-0.001	-0.001	-0.001	0.000	0.004	0.011	0.017	0.021	0.024	0.032	0.038	0.044
	0,6	0.000	-0.000	-0.001	-0.002	-0.002	-0.002	-0.002	0.000	0.005	0.010	0.014	0.017	0.024	0.030	0.037
	0,8	0.000	-0.000	-0.001	-0.001	-0.002	-0.003	-0.003	-0.003	-0.001	0.003	0.006	0.008	0.014	0.020	0.026
E	1	0.000	-0.000	-0.000	-0.001	-0.001	-0.002	-0.003	-0.004	-0.003	-0.001	0.001	0.003	0.009	0.013	0.019
	1,2	0.000	-0.000	-0.000	-0.001	-0.001	-0.001	-0.002	-0.003	-0.003	-0.002	-0.001	0.001	0.005	0.009	0.014
	1,4	0.000	-0.000	-0.000	-0.001	-0.001	-0.001	-0.002	-0.003	-0.003	-0.003	-0.002	-0.001	0.003	0.007	0.011
2,26	1,5	0.000	-0.000	-0.000	-0.000	-0.001	-0.001	-0.001	-0.002	-0.003	-0.003	-0.002	-0.001	0.002	0.006	0.010
	1,6	0.000	-0.000	-0.000	-0.000	-0.000	-0.001	-0.001	-0.002	-0.003	-0.003	-0.002	-0.001	0.002	0.005	0.009
	1,8	0.000	-0.000	-0.000	-0.000	-0.000	-0.001	-0.001	-0.002	-0.002	-0.002	-0.002	-0.002	0.001	0.004	0.007
	2	0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.001	-0.001	-0.002	-0.002	-0.002	-0.002	0.000	0.003	0.006
	2,5	0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	0.001	0.004
	3	0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.001	-0.001	-C.001	-0.001	-0.001	0.001	0.003
	4	0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.001	-0.001	-0.000	0.002
	5	0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	0.001
	10	0.000	0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-C.000	-0.000	-0.000	-0.000	0.000
	15	0.000	0.000	0.000	-0.000	0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	0.000
	20	0.000	0.000	0.000	0.000	0.000	0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	0.000
	50	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-0.000	0.000	-0.000	-0.000	-0.000	0.000

GIROUD. — Tables pour le calcul des fondations. Tome 2

9

A,	v	00	~~~~~	91010101011	200000	0-0-0-0-0	ゆしょうの	~ 1	b/a	Ś	00000	00000	nonono	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	914000	0
2		0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	8
	0 0,2 0,4	0.000 0.000 0.000	0.000 0.014 0.012	0.000 0.023 0.023	0.000 0.030 0.034	0.000 0.032 0.038	0.000 0.034 0.042	0.000 0.035 0.047	0.000 0.037 0.051	0.000 0.037 0.053	0.000 0.038 0.054	0.000 0.038 C.054	0.000 0.038 0.054	0.000 0.038 0.054	0.000 0.038 0.054	0.000 0.038 0.054
tre	0,5 0,6 0,8	0.000 0.000 0.000	0.011 0.010 0.008	0.021 0.019 0.015	0.032 0.029 0.023	0.036 0.034 0.027	0.041 0.039 0.032	0.047 0.045 0.038	0.053 0.051 0.045	0.055 0.055 0.050	0.056 0.056 0.051	0.056 0.056 C.051	0.056 0.056 0.052	0.056 0.056 0.052	0.056 0.056 0.052	0.056 0.056 0.052
coir cent	1 1,2 1,4	0.000 0.000 0.000	0.006 0.004 0.003	0.011 0.008 6.006	0.018 0.013 0.010	0.021 0.016 0.012	0.025 0.019 0.014	0.030 0.024 0.018	0.037 0.030 0.024	0.042 0.035 0.029	0.044 0.037 0.031	0.045 0.038 C.032	C.045 0.038 C.032	0.045 0.039 0.033	0.045 0.039 0.033	0.045 0.039 0.033
$= \frac{z}{2a}$ $= \frac{z}{a}$	1,5 1,6 1,8	0.000 0.000 0.000	0.003 0.002 0.002	0.005 0.005 0.004	0.009 0.008 0.006	0.010 0.009 0.007	0.013 0.011 0.009	0.016 0.014 0.011	0.021 0.019 0.015	0.026 0.023 0.019	0.028 0.025 0.021	0.029 C.026 0.022	0.029 C.027 0.023	0.030 0.028 0.023	0.030 0.028 0.024	0.030 0.028 0.024
N N	2 2,5 3	0.000 0.000 0.000	0.001 0.001 0.001	0.003 0.002 0.001	0.005 0.003 0.002	0.006 0.0.3 0.002	0.007 0.004 0.002	0.009 0.005 0.003	0.012 0.007 0.005	0.016 0.010 0.006	0.018 0.011 0.008	0.019 0.012 0.008	0.019 0.013 0.009	0.020 0.014 0.010	0.020 0.014 0.010	0.020 0.014 0.010
	4 5 10	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.001 0.000 0.000	0.001 0.000 0.000	0.001 0.001 0.000	0.001 0.001 0.000	0.002 0.001 0.000	0.003 0.002 0.000	0.004 0.002 0.000	0.004 0.003 0.000	0.005 0.003 0.000	0.006 0.004 0.001	0.006 0.004 0.001	0.006 0.004 0.001
	15 20 50	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000												

.

B		~~~	ゆしゆしゅ	うしうしつ	アリンク・ウィウ・ウ	しゅうしょう	りゅりゅうゅう	~ 1	b/a	<i>~~</i>	ひゅうりょう	しゅうしょう	10000	~~~~~	~~~~~~	≈'
-Z	X	0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	8
and a second	0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	C.000	0.000	0.000	0.000	0.000
	0,2	0.000	0.033	0.046	0.045	0.043	0.039	0.033	0.024	0.017	C.013	0.010	0.008	0.005	0.003	0.000
	0,4	0.000	0.018	0.032	0.041	0.043	0.043	0.041	0.034	0.025	0.019	0.016	0.013	C.008	0.004	0.000
	0,5	U.COO	0.014	0.026	0.036	0.038	0.040	0.040	0.035	0.027	0.021	0.017	C.014	C.CO9	0.004	0.000
	0,6	0.COO	0.011	0.021	0.030	0.033	0.036	0.038	0.035	0.027	0.022	0.018	C.015	0.009	0.005	0.000
	0,8	0.COO	0.007	0.014	0.022	0.025	0.028	0.031	0.031	0.026	0.022	0.018	C.015	C.CO9	0.005	0.000
E E	1	0.000	0.005	0.010	0.015	0.018	0.021	0.024	0.026	0.024	0.020	0.017	C.015	C.CO9	0.005	0.000
	1,2	0.000	0.004	0.007	0.011	0.013	0.015	0.018	0.021	0.021	0.018	0.016	O.014	0.009	0.004	0.000
	1,4	0.000	0.003	0.005	0.008	0.010	0.012	0.014	0.017	0.017	0.016	0.014	C.012	0.008	0.004	0.000
2/2	1,5	0.000	0.002	0.004	0.007	0.008	0.010	0.012	0.015	0.016	0.015	0.013	C.012	C.008	0.004	0.000
	1,6	0.000	0.002	0.004	0.006	0.007	0.009	0.011	0.014	0.015	0.014	0.013	0.011	0.007	0.004	0.000
	1,8	0.000	0.001	0.003	0.005	0.006	0.007	0.008	0.011	0.012	0.012	0.011	C.010	C.C07	0.004	0.000
r.	2	0.000	0.001	0.002	0.004	0.004	0.005	0.007	0.009	0.010	0.010	0.010	C.COS	C.006	0.003	0.000
	2,5	0.000	0.001	0.001	0.002	0.002	0.003	0.004	0.005	0.007	0.007	0.007	0.007	0.005	0.003	0.000
	3	0.000	0.000	0.001	0.001	0.002	0.002	0.002	0.003	0.004	0.005	0.005	0.005	0.004	0.002	0.000
	4 5 1 0	0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.001 0.000 0.000	0.001 0.000 0.000	0.001 0.000 0.000	0.001 3.001 0.000	0.002 0.001 0.000	0.002 0.001 0.000	0.003 0.002 0.000	0.003 0.002 0.000	C.003 0.002 C.000	0.003 0.002 C.000	0.002 0.001 0.001	0.000 0.000 0.000
	15	0.000	0.000	C.COO	0.000	0.000	0.000	0.000	0.000	0.000	0.000	C.CCO	C.COC	C.COO	0.000	0.000
	20	0.000	0.000	C.OOO	0.000	0.000	0.000	0.000	0.000	0.000	0.000	O.CCO	0.000	0.000	0.000	0.000
	50	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	C.CCO	0.000	C.OCO	0.000	0.000

Section 4-2

S	>	5.00	אישישיע	10-10-10-10-10-10-10-10-10-10-10-10-10-1	10000	0.000		~	b/a	è	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				500000	ž
V	X	0	0,1	0,2	73	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	8
~~~	$^{0}_{0,2}^{2}_{0,4}$	0.000	0.159 0.023 0.006	0.159 0.042 0.012	0.159 0.059 0.020	0.159 0.065 0.024	0.159 0.073 0.029	0.159 0.081 0.037	0.159 0.091 0.048	0.159 0.099 0.058	0.159 0.103 0.064	0.159 0.105 0.068	0.159 0.107 0.070	0.159 0.110 0.075	0.159 0.113 0.079	0.159 0.115 0.083
Proventin	0,5	0.000	0.003 0.001 -0.000	0.006 0.003 0.000	0.001	0.014 0.007 0.001	0.018 0.010 0.002	0.024 0.015 0.004	0.034 0.023 0.010	0.044	0.050 0.035 0.023	C.054 C.043 D.027	0.057 0.046 0.030	0.052 0.052 0.036	0.067 0.056 0.040	0.071 0.061 0.045
~~ <i>E</i>	1,2 1,4	0.000	-0.000 -0.001 -0.000	-0.001 -0.001 -0.001	-0.001 -0.001 -0.001	-0.001 -0.002 -0.002	-0.001 -0.002 -0.002	0.000 -0.001 -0.002	0.003	0.009 0.004 0.001	0.013 0.007 0.004	0.017 0.010 0.006	0.019 0.013 C.008	C.025 C.018 O.013	0.029 0.022 0.017	0.034 0.026 0.021
V _Z	 8,6 8,	0.000	-0.000	-0.001 -0.001 -0.001	-0.001 -0.001 -0.001	-0.002 -0.001 -0.001	-0.002 -0.002 -0.602	-0.002 -0.002 -0.002	-0.002 -0.002	0.000	0.003 0.002 0.000	0.005 0.004 0.002	0.007	0.009	0.015 0.013 0.010	0.019 0.017 0.014
BrBrBr	2 2,5 3	0.000	-0.000	-0.001 -0.000 -0.000	-0.001	-0.001	100.0-	-0.002 -0.001 -0.001	-0.002 -0.001 -0.001	-0.001	-0.000 -0.001 -0.001	0.000-0-0-000	0.000	6.005 0.002 0.001	0.008 0.005 0.003	0.012 0.008 0.006
00.00	4 S 0	0.000	-0.000	-0.000 -0.000 -0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.001 -0.000	-0.001	-0.000	-0.000	0.000.0-	0.001 0.001 -0.000	0.003 0.002 0.001
prono.	15 20 50	0.000	-0.000	-0•000 -0•000 -0•000	-0.000	-0.0000-0-	-0.0000-0-	-0.000	0000-0-	0000-0-	0000-0-	0000-0-	-0.000	0000-0-	0000-0-	0.000

113

O ,		20	~~~~	きついしょうしょう	12000	00000	00000	~ 1	b/a	~	00000	9-9-9-9-9 9-9-9-9-9-9	aladada da da	-00000	roonon	•
	(0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	8
	0 0,2 0,4	0.000 0.000 0.000	0.250 0.069 0.031	0.250 0.116 0.058	0.250 0.149 0.085	0.250 0.159 0.095	0.250 0.169 0.106	0.250 0.177 0.118	0.250 0.184 0.128	0.250 0.187 0.133	0.250 0.188 0.134	0.250 0.188 0.134	0.250 0.188 0.134	0.250 0.188 0.135	0.250 0.188 0.135	0.250 0.188 0.135
tre	0,5 0,6 0,8	0.000 0.000 0.000	0.022 0.017 0.009	C.C43 O.O32 O.C18	0.064 0.049 0.029	0.073 0.056 0.034	0.083 0.065 0.040	0.094 0.075 0.047	0.105 0.086 0.057	0.110 0.091 0.062	0.112 0.093 0.064	0.112 0.093 0.064	0.112 0.094 0.065	0.113 0.094 0.065	0.113 0.094 0.065	0.113 0.094 0.065
coir cent	1 1,2 1,4	0.000 0.000 0.000	0.006 0.003 0.002	0.011 0.007 0.004	0.018 0.011 0.007	0.021 0.013 0.008	0.025 0.016 0.010	0.030 0.020 0.013	0.037 0.025 0.017	0.042 0.029 0.020	0.044 0.031 0.022	0.045 0.032 0.023	0.045 0.032 0.023	0.045 0.032 0.023	0.045 0.032 0.023	0.045 0.032 0.023
= ^z / _{2a}	1,5 1,6 1,8	0.000 0.000 0.000	0.002 0.001 0.001	0.004 0.003 0.002	0.006 0.005 0.003	0.007 0.006 0.004	0.008 0.007 0.005	0.011 0.009 0.006	0.014 0.012 0.008	0.017 0.015 0.011	0.019 0.016 0.012	0.019 0.017 0.012	0.020 0.017 0.013	0.020 0.017 0.013	0.020 0.017 0.013	0.020 0.017 0.013
N	2,5 3	0.000 0.000 0.000	0.001 0.000 0.000	0.001 0.001 0.000	0.002 0.001 0.001	0.003 0.001 0.001	0.003 0.002 0.001	0.004 0.002 0.001	0.006 0.003 0.002	0.008 0.004 0.002	0.009 0.005 0.003	0.009 0.005 0.003	0.010 0.005 0.003	0.010 0.006 0.003	0.010 0.006 0.003	0.010 0.006 0.003
	4 5 10	0.000 0.000 0.000	0.001 0.000 0.000	0.001 0.000 0.000	0.001 0.000 0.000	0.001 0.001 0.000	0.001 0.001 0.000	0.001 0.001 0.000	0.002 0.001 0.000	0.002 0.001 0.000						
	15 20 50	0.000 0.000 0.000	0.000 0.000 0.000	C.COO C.COO D.COO	0.000 0.000 0.000	0.000 0.000 0.000	C.COO 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 C.COC	0.000 0.000 0.000	0.000	0.000 0.000 0.000

4-2

Chapitre 4

0		~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ひつりつう	ローローローロー	99.9.9.9	www.www.	so	b/a	~	000000	~~~~	ngradadad	~~~~~	ひゅうしょう	0
4	V	0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	8
	0 0,2 0,4	0.000	0.250 0.010 0.002	0.250 0.045 0.010	0.250 0.094 0.032	0.250 0.112 0.045	0.250 0.134 0.064	0.250 0.158 0.091	0.250 0.184 0.128	0.250 0.201 0.156	0.250 0.208 0.169	0.250 0.211 0.176	0.250 0.214 0.179	0.250 0.217 0.186	0.250 0.218 0.188	0.250 0.219 0.189
1 tre	0,5 0,6 0,8	0.000 0.000 0.000	0.001 0.000 0.000	0.006 0.003 0.001	0.020 0.013 0.006	0.029 0.019 0.009	0.044 0.031 0.016	0.068 0.051 0.029	0.105 0.086 0.057	0.136 0.118 0.087	0.151 0.134 0.106	0.159 0.144 0.117	0.164 0.149 0.124	0.172 0.158 0.135	0.175 0.163 0.141	0.176 0.164 0.143
coi cen	1 1,2 1,4	0.000 0.000 0.000	C.000 0.000 0.000	0.601 0.600 6.000	0.003 0.002 0.001	0.005 0.003 0.002	0.009 0.005 0.003	0.017 0.011 0.007	0.037 0.025 0.017	0.064 0.047 0.035	0.083 0.065 0.051	0.095 0.077 0.062	C.103 C.085 C.071	0.116 0.100 0.087	0.123 0.108 0.095	0.125 0.111 0.099
$= \frac{z}{2a}$	1,5 1,6 1,8	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.001 0.001 0.000	0.001 0.001 0.001	0.003 0.002 0.001	0.005 0.004 0.003	0.014 0.012 0.008	0.030 0.026 0.020	0.045 0.040 0.031	0.056 0.051 0.041	C.064 0.059 0.049	0.081 0.076 0.066	0.090 0.085 0.077	0.094 0.089 0.081
N	- 2 2,5 3	0.000 0.000 0.000	C.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.001 0.000 0.000	0.001 0.000 0.000	0.002 0.001 0.000	0.006 0.003 0.002	0.015 0.008 0.004	C.025 C.014 D.008	0.034 0.021 0.013	0.041 0.027 0.018	0.058 0.043 0.032	0.069 0.055 0.045	0.074 0.061 0.051
	4 5 1 D	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.001 0.000 0.000	0.002 0.001 0.000	0.003 0.002 0.000	0.006 0.003 0.000	C.008 0.004 0.000	0.018 0.011 0.001	0.031 0.022 0.006	0.039 0.031 0.016
	15 20 50	0.000 0.000 0.000	0.000 0.000 0.000	C.COU C.COU Q.COU	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000	0.000 0.000 0.000	0.000 0.000 0.000	C.COO C.OOO C.OOO	0.000 0.000 0.000	0.002 0.001 0.000	0.011 0.008 0.003

0		\$	~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	しゅうしょう	9-9-9-9-9-9-	00000	~ 1	b/a	-Der	TID DID DID	0-0-0-0-0-	1-0-0-0-0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~D~D~D~D~	>
	(0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	8
	0	0.000	0.234	0.219	0.199	0.189	0.176	0.156	0.125	0.094	0.074	0.061	0.051	0.031	0.016	0.000
	0,2	0.000	0.059	C.097	0.118	0.121	0.122	0.118	0.103	0.082	0.067	0.056	0.048	0.030	0.016	0.000
	0,4	0.000	0.026	C.048	0.069	0.075	0.082	0.086	0.083	0.071	0.060	0.051	0.045	0.029	0.015	0.000
a l	0,5	0.000	0.019	0.036	0.054	0.060	0.067	0.073	0.074	0.066	0.056	0.049	0.043	0.028	0.015	0.000
	0,6	0.000	0.015	0.028	0.043	0.049	0.056	0.062	0.066	0.061	0.053	0.047	0.041	0.028	0.015	0.000
	0,8	0.000	0.009	0.018	0.029	0.033	0.039	0.046	0.052	0.052	0.047	0.043	C.038	0.026	0.015	0.000
coin cent	1 1,2 1,4	0.000 0.000 0.000	0.007 0.005 0.004	0.013 0.009 0.007	0.021 J.015 0.012	0.024 0.018 0.014	0.029 0.022 0.017	0.035 0.027 0.021	0.042 0.034 0.027	0.044 0.037 0.032	0.042 0.037 0.033	0.039 0.035 0.032	0.035 0.032 0.030	0.025 0.024 0.023	0.014 0.014 0.014	0.000 0.000 0.000
= 2/2a	1,5 1,6 1,8	0.000	0.003 0.003 0.002	0.006 0.006 0.005	0.010 0.009 0.007	0.012 0.011 0.009	0.015 0.013 0.011	0.019 0.017 0.014	0.025 0.023 0.019	0.029 0.027 0.024	0.031 0.029 0.025	0.030 0.028 0.026	C.029 0.027 C.025	0.022 0.022 0.021	0.014 0.013 0.013	0.000 0.000 0.000
3	2	0000.0	0.002	C.004	0.006	0.007	0.009	0.012	0.016	0.020	0.023	0.023	C.023	0.020	0.013	0.000
	2,5	000.0	0.001	C.002	0.004	0.005	0.006	0.008	0.011	0.015	0.017	0.018	C.019	0.017	0.012	0.000
	3	000.0	0.001	C.C02	0.003	0.003	0.004	0.006	0.008	0.011	0.013	0.015	C.015	0.015	0.011	0.000
	4	000.00	0.000	C.001	0.002	0.002	0.002	0.003	0.005	0.007	0.008	0.010	0.011	0.012	0.010	0.000
	5	000.00	0.000	C.001	0.001	0.001	0.002	0.002	0.003	0.004	0.006	0.007	0.008	0.009	0.009	0.000
	10	000.00	0.000	C.COU	0.000	0.000	0.000	0.001	0.001	0.001	0.002	0.002	0.002	0.603	0.005	0.000
	15	0.000	0.000	C.COO	0.000	0.000	0.000	0.000	0.000	0.001	0.001	C.001	C.001	0.002	0.003	0.000
	20	0.000	0.000	C.COU	0.000	0.000	0.000	0.000	0.000	0.000	0.000	O.000	C.001	0.001	0.002	0.000
	50	0.000	0.000	C.COO	0.000	0.000	0.000	0.000	0.000	0.000	0.000	C.COO	C.COC	0.000	0.000	0.000

1_

C. 1
Ļ,
20

0	7	~~~	しょうしょう	たいしょうしょう	anaa	~~~~~~	うしょうしょう	~ /	b/a	~	~~~~~	\$0.000	~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ちゅうしょう	0
	У	0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	8
	0 0,2 0,4	0.000 0.000 0.000	0.016 0.013 0.010	0.031 0.025 0.020	0.051 0.041 0.032	0.061 0.049 0.039	0.074 0.J60 0.047	0.094 0.076 0.061	0.125 0.103 0.083	0.156 0.130 0.106	. 0.176 0.148 C.122	0.189 0.160 0.133	0.199 0.169 C.141	0.219 0.188 0.159	0.234 0.203 0.174	0.250 0.219 0.189
n tre	0,5 0,6 0,8	0.000 0.000 0.000	0.009 0.008 0.006	0.017 0.015 0.012	0.029 0.025 0.020	0.034 0.030 0.023	0.042 0.037 0.029	0.054 0.048 0.037	0.074 0.066 0.052	0.096 0.086 0.069	0.111 C.100 C.082	0.121 0.110 0.091	0.129 0.118 0.098	0.146 0.134 0.114	0.161 0.149 0.127	0.176 0.164 0.143
c o i i c e n	1 1,2 1,4	0.000 0.000 0.000	0.0J5 0.004 0.0J3	C.009 C.007 C.C96	0.015 0.012 0.010	0.018 0.015 0.012	0.023 0.018 0.015	0.029 0.024 J.019	0.042 0.034 0.027	0.056 0.046 0.038	0.067 C.056 C.046	0.075 C.063 0.053	C.082 0.069 C.058	C.C97 0.083 0.C72	0.110 0.096 0.084	0.125 0.111 0.099
$=\frac{z}{2a}$	1,5 1,6 1,8	0.000 0.000 0.000	0.003 0.002 0.002	0.005 0.005 0.004	0.009 0.008 0.007	0.011 0.010 0.108	0.013 J.012 0.010	0.017 0.016 0.013	0.025 0.023 0.019	0.035 0.032 0.027	0.043 0.039 C.033	C.049 O.045 C.C39	C.054 C.050 C.043	C.067 O.062 O.055	0.079 0.074 0.066	0.094 0.089 0.081
J N	2 2,5 3	0.000 0.000 0.000	0.002 0.001 0.001	0.013 0.012 0.022	0.006 0.004 0.013	0.007 0.005 J.)/3	0.008 0.006 0.004	0.011 0.007 0.005	0.016 0.011 0.008	0.023 0.016 0.012	0.029 C.020 0.015	0.033 0.024 0.018	C.038 0.027 0.021	0.048 C.036 0.028	0.059 C.047 O.038	0.074 0.061 0.051
	4 5 1 0	0.000 0.000 0.000	0.000 0.000 0.000	0.001 0.001 0.000	0.002 0.001 0.005	0.002 0.001 0.001	0.002 0.002 0.000	0.003 0.002 0.001	0.005 0.003 0.001	0.007 0.005 0.001	0.009 0.006 0.002	C.011 C.CO7 0.002	0.013 0.009 0.002	C.018 0.013 0.004	0.026 0.019 0.007	0.039 0.031 0.016
	15 20 50	0.000 0.000 0.000	0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.001 0.000 0.000	0.001 0.600 0.000	0.001 C.000 C.CCC	C.001 C.001 C.C00	C.002 C.C01 C.00C	0.003 0.002 0.000	0.011 0.008 0.003

0.		~~~	~~~~~	~~~~~~	9.0.0.0.0.	D-D-D-D-D	00000	~ /	b/a	Ş	Grandrad and a standard and a standard and a standard and a standard a standard a standard a standard a standard	60000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ron or	5-0-0-0-0-0-	0
		0	0,1	0,2	1/3	0,4	0,5	2/3	1	1,5	2	2,5	3	5	10	8
	0	0.000	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250
	0,2	0.000	0.137	0.204	0.234	0.240	0.244	0.247	0.249	0.249	0.249	0.249	0.249	0.249	0.249	0.249
	0,4	0.000	0.076	0.136	0.187	0.202	0.218	0.231	0.240	0.243	0.244	0.244	0.244	0.244	0.244	0.244
n tre	0,5 0,6 0,8	0.000 0.000 0.000	0.061 0.051 0.037	0.113 0.096 0.071	0.164 0.143 0.111	0.181 0.161 0.127	0.200 0.182 0.148	0.218 0.204 0.173	0.232 0.223 0.200	0.238 0.231 0.214	0.239 0.233 0.218	0.240 0.234 0.219	0.240 0.234 0.220	0.240 0.234 0.220	0.240 0.234 0.220	0.240 0.234 0.220
c o i	1	0.000	0.028	0.055	0.087	0.101	0.120	0.145	0.175	0.194	0.200	0.202	0.203	0.204	0.205	0.205
	1,2	0.000	0.022	0.043	0.069	0.081	0.098	0.121	0.152	0.173	0.182	0.185	0.187	0.189	0.189	0.189
	1,4	0.000	0.018	0.035	0.056	0.066	0.080	0.101	0.131	0.154	0.164	0.169	0.171	0.174	0.174	0.174
$=$ $\frac{z}{2a}$	1,5	0.000	0.016	0.031	0.051	0.060	0.073	0.092	0.121	0.145	0.156	0.161	0.164	0.166	0.167	0.167
	1,6	0.000	0.014	0.028	0.046	0.055	0.067	0.085	0.112	0.136	0.148	0.154	0.157	0.160	0.160	0.160
	1,8	0.000	0.012	0.024	0.039	0.046	0.056	0.072	0.097	0.121	0.133	0.140	0.143	0.147	0.148	0.148
N	2	0.000	0.010	0.020	0.033	0.039	0.048	0.061	0.084	0.107	0.120	0.127	0.131	0.136	0.137	0.137
	2,5	0.000	0.007	0.013	0.022	0.027	0.033	0.043	0.060	0.080	0.093	0.101	0.106	0.113	0.115	0.115
	3	0.000	0.005	0.010	0.016	0.019	0.024	0.031	0.045	0.061	0.073	0.081	0.087	0.096	0.099	0.099
	4	0.000	0.003	0.006	0.009	0.011	0.014	0.019	0.027	0∘038	0.048	0.055	0.060	0.071	0.076	0.076
	5	0.000	0.002	0.004	0.006	0.007	0.009	0.012	0.018	0∙026	0.033	0.039	0.043	0.055	0.061	0.062
	1 0	0.000	0.000	0.001	0.002	0.002	0.002	0.003	0.005	0∙007	0.009	0.011	0.013	0.020	0.028	0.032
	15	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.002	0.003	0.004	0.005	0.006	0.010	0.016	0.021
	20	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.002	0.002	0.003	0.004	0.006	0.010	0.016
	50	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.006

ECRITURE EXPLICITE DES A_i, B_i, C_i

(coefficients dont les valeurs numériques se trouvent dans les Tables et Graphiques précédents).

$$\alpha = b/a$$
 $\zeta = \begin{cases} z/2a & \text{sous un coin} \\ z/a & \text{sous le centre} \end{cases}$

$$\begin{split} A_{z} &= \frac{\zeta}{2\pi} \left[2 \log \frac{\sqrt{1+\zeta^{2}} \left(\alpha + \sqrt{1+\alpha^{2}+\zeta^{2}}\right)}{\zeta \left(\alpha + \sqrt{1+\alpha^{2}+\zeta^{2}}\right)} - \frac{\alpha}{\left(1+\zeta^{2}\right) \sqrt{1+\alpha^{2}+\zeta^{2}}} \right] \\ B_{z} &= \frac{\zeta}{2\pi} \left[\frac{1}{\sqrt{1+\alpha^{2}+\zeta^{2}}} - \frac{1}{\sqrt{1+\zeta^{2}}} + \log \frac{\sqrt{\alpha^{2}+\zeta^{2}} \left(1+\sqrt{1+\zeta^{2}}\right)}{\zeta \left(1+\sqrt{1+\alpha^{2}+\zeta^{2}}\right)} \right], \\ C_{z} &= \frac{1}{2\pi} \left[\arctan \operatorname{tg} \frac{\alpha}{\zeta \sqrt{1+\alpha^{2}+\zeta^{2}}} - 2 \zeta \log \frac{\sqrt{1+\zeta^{2}} \left(\alpha + \sqrt{\alpha^{2}+\zeta^{2}}\right)}{\zeta \left(\alpha + \sqrt{1+\alpha^{2}+\zeta^{2}}\right)} - \frac{\zeta}{\alpha \sqrt{1+\alpha^{2}+\zeta^{2}}} + \frac{\zeta}{\alpha \sqrt{1+\zeta^{2}+\zeta^{2}}} \right], \\ A'_{z} &= \frac{\alpha}{2\pi} \log \frac{\zeta + \sqrt{1+\alpha^{2}+\zeta^{2}}}{\zeta + \sqrt{1+\alpha^{2}+\zeta^{2}}}, \\ B'_{z} &= \frac{1}{2\pi \alpha} \left[\log \frac{\zeta + \sqrt{1+\alpha^{2}+\zeta^{2}}}{\zeta + \sqrt{1+\alpha^{2}+\zeta^{2}}} + \zeta \log \frac{\sqrt{\alpha^{2}+\zeta^{2}} \left(1+\sqrt{1+\zeta^{2}}\right)}{\zeta \left(1+\sqrt{1+\alpha^{2}+\zeta^{2}}\right)} \right], \\ C'_{z} &= \frac{1}{2\pi} \left[-\arctan \operatorname{tg} \alpha + \arctan \operatorname{tg} \frac{\alpha \sqrt{1+\alpha^{2}+\zeta^{2}}}{\zeta \left(1+\sqrt{1+\alpha^{2}+\zeta^{2}}\right)} + \alpha \left(\frac{1}{\sqrt{1+\alpha^{2}+\zeta^{2}}} - \frac{1}{\sqrt{\alpha^{2}+\zeta^{2}}} \left(1+\sqrt{1+\zeta^{2}} \left(1+\sqrt{1+\zeta^{2}}\right) \right) \right], \\ B_{y} &= \frac{1}{2\pi} \left[\log \frac{\sqrt{1+\zeta^{2}} \left(\alpha + \sqrt{\alpha^{2}+\zeta^{2}}\right)}{\zeta \left(1+\sqrt{1+\alpha^{2}+\zeta^{2}}\right)} - \frac{\alpha\zeta}{\alpha^{2}+\zeta^{2}} + \frac{1}{\sqrt{\alpha^{2}+\zeta^{2}}} \right], \\ B_{y} &= \frac{1}{2\pi} \left[\operatorname{lac} \operatorname{tg} \frac{\alpha}{\zeta \sqrt{1+\alpha^{2}+\zeta^{2}}} - \zeta \log \frac{\sqrt{1+\zeta^{2}} \left(\alpha + \sqrt{\alpha^{2}+\zeta^{2}}\right)}{\zeta \left(\alpha + \sqrt{1+\alpha^{2}+\zeta^{2}}\right)} - \frac{\alpha\zeta}{\sqrt{1+\alpha^{2}+\zeta^{2}}} \right], \\ C_{y} &= \frac{1}{2\pi} \left[\arctan \operatorname{tg} \frac{\alpha}{\zeta \sqrt{1+\alpha^{2}+\zeta^{2}}} - \zeta \log \frac{\sqrt{1+\zeta^{2}} \left(1+\sqrt{1+\zeta^{2}} \left(\alpha + \sqrt{\alpha^{2}+\zeta^{2}}\right)}{\zeta \left(\alpha + \sqrt{1+\alpha^{2}+\zeta^{2}}\right)} - \frac{\alpha\zeta}{\sqrt{1+\alpha^{2}+\zeta^{2}}} + \frac{\alpha\zeta}{\sqrt{\alpha^{2}+\zeta^{2}}} \right], \\ B'_{y} &= \frac{1}{2\pi} \left[\operatorname{ac} \operatorname{tg} \frac{\zeta + \sqrt{\alpha^{2}+\zeta^{2}}}{\zeta \sqrt{1+\alpha^{2}+\zeta^{2}}} + \zeta \log \frac{\sqrt{1+\zeta^{2}} \left(\alpha + \sqrt{\alpha^{2}+\zeta^{2}}\right)}{\zeta \left(\alpha + \sqrt{1+\alpha^{2}+\zeta^{2}}\right)} - \frac{\alpha\zeta}{\sqrt{1+\alpha^{2}+\zeta^{2}}} + \frac{\alpha\zeta}{\sqrt{\alpha^{2}+\zeta^{2}}} \right], \\ B'_{y} &= \frac{1}{2\pi} \log \frac{\zeta + \sqrt{1+\alpha^{2}+\zeta^{2}}}{\zeta + \sqrt{1+\alpha^{2}+\zeta^{2}}}} + \zeta \log \frac{\sqrt{1+\zeta^{2}} \left(\alpha + \sqrt{\alpha^{2}+\zeta^{2}}\right)}{\zeta \left(\alpha + \sqrt{1+\alpha^{2}+\zeta^{2}}\right)} - \frac{\alpha\zeta}{\zeta} + \frac{\alpha\zeta}{\sqrt{\alpha^{2}+\zeta^{2}}} \right], \\ C'_{y} &= \frac{1}{2\pi} \left[\operatorname{ac} \operatorname{tg} \alpha - \operatorname{ac} \operatorname{tg} \frac{\alpha\zeta}{\sqrt{1+\alpha^{2}+\zeta^{2}}} + \alpha \log \frac{\zeta + \sqrt{1+\alpha^{2}+\zeta^{2}}}{\zeta + \sqrt{\alpha^{2}+\zeta^{2}}} - \frac{\alpha\zeta}{\zeta} + \frac{\sqrt{1+\alpha^{2}+\zeta^{2}}}{\zeta} + \alpha + \sqrt{\alpha^{2}+\zeta^{2}}} \right], \\ C'_{y} &= \frac{1}{2\pi} \left[\operatorname{ac} \operatorname{tg} \alpha - \operatorname{ac} \operatorname{tg} \frac{\alpha\zeta}{\sqrt{1+\alpha^{2}+\zeta^{2}}} + \alpha \log \frac{\zeta + \sqrt{1+\alpha^{2}+\zeta^{2}}}{\zeta} + \alpha + \sqrt{\alpha^{2}+$$

Section 4-2

$$\begin{split} A_{x} &= \frac{a}{2} \frac{\zeta}{\pi} \left[\frac{1}{\sqrt{a^{2} + \zeta^{2}}} - \frac{\zeta}{(1 + \zeta^{2})\sqrt{1 + a^{2} + \zeta^{2}}} \right] \\ B_{x} &= \frac{2}{2} \frac{\zeta}{\pi a} \left[\frac{1}{\sqrt{1 + \zeta^{2}}} - \frac{\zeta^{2}}{(a^{2} + \zeta^{2})\sqrt{1 + a^{2} + \zeta^{2}}} - \frac{\zeta}{\sqrt{x^{2} + \zeta^{2}}} - \frac{\zeta}{\sqrt{x^{2} + \zeta^{2}}} - \frac{\zeta}{\sqrt{x^{2} + \zeta^{2}}} - \frac{\zeta}{\sqrt{x^{2} + \zeta^{2}}} \right] \\ C_{x} &= \frac{1}{2\pi} \left[\arctan tg \frac{\zeta}{\chi} \frac{\alpha}{x^{2} + \zeta^{2}} + \frac{1}{\sqrt{1 + \alpha^{2} + \zeta^{2}}} + \frac{\alpha}{\sqrt{1 + \alpha^{2} + \zeta^{2}}} - \frac{\chi^{2}}{\sqrt{x^{2} + \zeta^{2}}} + \frac{\zeta}{\sqrt{x^{2} + \zeta^{2}}} - \frac{\zeta}{\sqrt{x^{2} + \zeta^{2}}} \right] \\ A_{xz} &= \frac{1}{2\pi} \left[\frac{1}{\sqrt{1 + \alpha^{2} + \zeta^{2}}} - \frac{1}{\sqrt{1 + \alpha^{2} + \zeta^{2}}} + \log \frac{\sqrt{x^{2} + \zeta^{2}}}{\zeta(1 + \sqrt{1 + \alpha^{2} + \zeta^{2}})} \right] \\ B_{xy} &= \frac{1}{2\pi} \left[\frac{1}{\sqrt{1 + \alpha^{2} + \zeta^{2}}} - \frac{1}{\sqrt{\alpha^{2} + \zeta^{2}}} + \zeta \log \frac{\sqrt{x^{2} + \zeta^{2}}}{\zeta(x + \sqrt{1 + \alpha^{2} + \zeta^{2}})} - \frac{\zeta}{\zeta} \log \frac{\sqrt{1 + \alpha^{2} + \zeta^{2}}}{\zeta(x + \sqrt{1 + \alpha^{2} + \zeta^{2}})} \right] \\ C_{xy} &= \frac{1}{2\pi} \left[1 - \frac{\zeta}{\sqrt{1 + \alpha^{2} + \zeta^{2}}} - \zeta \log \frac{\sqrt{\alpha^{2} + \zeta^{2}}}{\sqrt{1 + \alpha^{2} + \zeta^{2}}} + \zeta \log \frac{\sqrt{1 + \alpha^{2} + \zeta^{2}}}{\sqrt{\alpha^{2} + \zeta^{2}}} \right] \\ A'_{xz} &= \frac{1}{2\pi} \left[\alpha \arctan tg \frac{1}{\alpha} - \alpha \arctan tg \frac{\chi}{\sqrt{1 + \alpha^{2} + \zeta^{2}}} + \zeta \log \frac{\zeta(\alpha + \sqrt{1 + \alpha^{2} + \zeta^{2})}}{\sqrt{1 + \alpha^{2} + \zeta^{2}}} \right] \\ B'_{xy} &= \frac{1}{2\pi} \left[\arctan tg \alpha - \operatorname{Arc} tg \frac{-\chi}{\sqrt{1 + \alpha^{2} + \zeta^{2}}} + \zeta \log \frac{\zeta(\alpha + \sqrt{1 + \alpha^{2} + \zeta^{2})}}{\sqrt{1 + \alpha^{2} + \zeta^{2}}} \right] \\ B'_{xz} &= \frac{1}{2\pi} \left[\arctan tg \alpha - \operatorname{Arc} tg \frac{-\chi}{\sqrt{1 + \alpha^{2} + \zeta^{2}}} + \zeta \log \frac{\zeta(\alpha + \sqrt{1 + \alpha^{2} + \zeta^{2})}}{\sqrt{1 + \alpha^{2} + \zeta^{2}}} \right] \\ C'_{xy} &= \frac{1}{2\pi} \left[\left[\alpha - \frac{1}{\alpha^{2}} \right] \operatorname{arc} tg \alpha - \alpha \arctan tg \frac{\alpha}{\sqrt{1 + \alpha^{2} + \zeta^{2}}} + \frac{\zeta}{\sqrt{1 + \alpha^{2} + \zeta^{2}}} \right] \\ A_{xz} &= \frac{\zeta}{2\pi} \left[1 - \frac{\zeta}{\sqrt{1 + \zeta^{2}}} - \frac{\zeta}{\sqrt{\alpha^{2} + \zeta^{2}}} - \frac{\zeta}{\sqrt{1 + \alpha^{2} + \zeta^{2}}} \right] \\ A_{xz} &= \frac{1}{2\pi} \left[\left[\sqrt{1 + \zeta^{2}} - \zeta + \frac{\zeta}{\sqrt{2^{2} + \zeta^{2}}} - \frac{\zeta}{\sqrt{1 + \alpha^{2} + \zeta^{2}}}} \right] \\ A_{xz} &= \frac{1}{2\pi} \left[\frac{1}{\sqrt{1 + \zeta^{2}}} - \frac{\zeta}{\sqrt{\alpha^{2} + \zeta^{2}}} - \frac{\zeta}{\sqrt{1 + \alpha^{2} + \zeta^{2}}} \right] \\ A_{xz} &= \frac{1}{2\pi} \left[x \operatorname{etg} \frac{\alpha}{\sqrt{1 + \alpha^{2} + \zeta^{2}}} - \frac{\zeta}{\sqrt{1 + \alpha^{2} + \zeta^{2}}} - \frac{\zeta}{\sqrt{1 + \alpha^{2} + \zeta^{2}}} \right] \\ A_{xz} &= \frac{1}{2\pi} \left[x \operatorname{etg} \frac{\alpha}{\sqrt{1 + \alpha^{2} + \zeta^{2}}} - \frac{\zeta}{\sqrt{1 + \alpha^{2} + \zeta^{2}}} - \frac{\zeta}{\sqrt{1 +$$

125

BIBLIOGRAPHIE

Le détail des calculs qui nous ont permis d'obtenir tous les coefficients de cette section a fait l'objet d'une publication [1]. Signalons toutefois que Vogt [3] avait déjà calculé 0_w et Steinbrenner 0_w et 0_z [2].

REFERENCES

- [1] J.P. GIROUD, "Fondation rectangulaire linéairement chargée : tassement et contraintes", <u>Annales de l'I.T.B.T.P.</u>, 253, SF 70 (janvier 1969), 81-111.
- [2] W. STEINBRENNER, "Boden mechanik und neuzeitlicher Strassenbau", Volk und Reich Verlag (Berlin, 1936).
- [3] F. VOGT, "Uber die Berechnung der Fundamentdeformation", <u>Av handlinger utgit</u> <u>av Det Norske Videnkaps</u>, Akademi Math. Naturv. Klasse (Oslo, 1925), p. 8, 9 et 24.

SECTION 4-3

FONDATION RECTANGULAIRE EXERÇANT UNE CHARGE NORMALE UNIFORMÉMENT RÉPARTIE

(Semelle, Radier souple, Remblai dont la hauteur est petite par rapport à la largeur) sur une couche de sol homogène d'épaisseur finie

SOMMAIRE

- Définition du sol
- Définition de la charge
- Calcul direct du tassement
- Calcul du tassement moyen
- Calcul des contraintes
- Tables et Graphiques
- Bibliographie

DEFINITION DU SOL

Le sol est composé d'une couche homogène d'épaisseur H reposant sur un substratum indéformable auquel elle adhère parfaitement.

DEFINITION DE LA CHARGE

La charge est une <u>pression uniforme</u> p exercée sur un rectangle de longueur L et largeur B à la surface du sol (Fig. 1). Ceci convient pour les grands radiers flexibles, les réservoirs métalliques, les stockages à base rectangulaire de tôles et de lingots, les réserves d'eau en terre revêtue d'étanchéité et les remblais à base rectangulaire, à condition que leur hauteur soit petite vis à vis de leur largeur pour que leur charge puisse approximativement être considérée comme uniforme.

De plus, le calcul du <u>tassement moyen</u> s'applique avec une bonne approximation aux fondations rigides.

FIG. 1. - Définition de la fondation rectangulaire reposant sur une couche d'épaisseur H.

CALCUL DU TASSEMENT

a) Tassement de certains points particuliers

Les formules suivantes donnent directement le tassement au <u>coin</u>, C, au <u>milieu du petit côté</u>, N, au <u>milieu du grand côté</u>, M, et au <u>centre</u>, O, du rectangle (Fig. 2) :

(1)
$$w_{C} = \frac{pB}{E} P_{H}$$
 avec $\alpha = \frac{L}{B}$ et $\beta = \frac{H}{B}$

FIG. 2. - Définition des points dont le tassement est donné directement par les formules (1) à (8).

(2)
$$w_N = \frac{pB}{E} P_H$$
 avec $\alpha = \frac{2L}{B}$ by $\beta = \frac{2H}{B}$
(3) $w_M = \frac{2pB}{E} P_H$ avec $\begin{cases} \sin L \ge 2B : \alpha = \frac{L}{2B} \text{ et } \beta = \frac{H}{B} \\ \sin B \le L \le 2B : \alpha = \frac{2B}{L} \text{ et } \beta = \frac{2H}{L} \end{cases}$
(4) $w_O = \frac{2pB}{E} P_H$, avec $: \alpha = \frac{L}{B} \text{ et } \beta = \frac{2H}{B}$;

avec :

- p : contrainte normale uniformément répartie au contact de la charge et du sol ;
- B : largeur de la fondation ;
- L : longueur de la fondation ;
- H : épaisseur de la couche de sol ;
- E : module d'Young du sol ;
- $P_{\rm H}$: coefficient sans dimensions dont les valeurs sont données dans des tables et graphiques en fonction de $\nu,\,\alpha$ et β ;
 - v : coefficient de Poisson du sol ;
- α et β : deux paramètres dont la signification dépend du point considéré.

129

;

(5)
$$w_{C} = \frac{pn}{E} P'_{H}$$
, avec $\alpha = \frac{L}{B}$ et $\beta' = \frac{B}{H}$;
(6) $w_{N} = \frac{2 pH}{E} P'_{H}$, avec $\alpha = \frac{2 L}{B}$ et $\beta' = \frac{B}{2 H}$;
(7) $w_{M} = \frac{2 pH}{E} P'_{H}$ avec $\begin{cases} \text{si } L \ge 2 B \\ \text{si } B \le L \le 2 B \\ \text{si } B \le 2$

avec :

 P'_H : coefficient sans dimensions dont les valeurs sont données dans des tables et graphiques en fonction de ν , α et β' .

Bien entendu, l'emploi des formules (1) à (4) ou (5) à (8) conduit aux mêmes valeurs du tassement et $P'_{\rm H}$ est relié à $P_{\rm H}$ par la relation :

(9)
$$P'_{H} = \beta' P_{H} = \frac{1}{\beta} P_{H}$$

Le coefficient P_H est plus commode dans le cas d'une <u>couche relativement</u> <u>épaisse</u> et P'_H dans le cas d'une <u>couche relativement mince</u>.

Exemple 1 :

Considérons le remblai défini par la figure 3, avec 2 a = 46 m (150 ft), 2 a' = 34 m (112 ft), 2 b = 66 m (216 ft) et 2 b' = 54 m (178 ft). Sa hauteur est h = 4 m (13 ft) et son poids volumique est $\gamma = 1,95$ g/cm³ (122 lb/cu. ft). La couche de sol a pour épaisseur H = 10 m (33 ft), pour module d'Young, E = 38 bars (80 000 lb/sq. ft) et pour coefficient de Poisson, v = 0,3. Quel est le tassement du centre de ce remblai ?

On peut, avec une bonne approximation, considérer que le remblai exerce sur le sol une charge p uniformément répartie sur un rectangle de côtés L et B tels que (Fig. 3 b) :

L = b + b' = 60 m (197 ft),B = a + a' = 40 m (131 ft).

La charge a pour valeur :

 $p = \gamma h = 1 950 \times 9,81 \times 4 = 0,77.10^5$ pascals = 0,77 bar, = 122 × 13 = 1 580 lb/sq. ft.

Calculons alors le tassement à l'aide de la formule (4). Pour ν = 0,3, α = L/B = 1,5 et β = 2 H/B = 0,5, on a :

P_H = 0,096.

D'où :

$$w_0 = \frac{2 \times 0,77 \times 40}{38} \times 0,096 = 0,15 \text{ m} = 15 \text{ cm}$$
$$w_0 = \frac{2 \times 1,580 \times 131}{80,000} \times 0,096 = 0,5 \text{ ft} = 6 \text{ in.}$$

On vérifierait aisément que le même résultat est obtenu par la formule (8).

b) Tassement d'un point quelconque de la surface du sol

On se ramène à l'un des quatre cas précédents par application du <u>principe</u> de superposition, comme cela est illustré par les exemples suivants :

Exemple 2 :

Le tassement du point P de la figure 4 est la somme du tassement au milieu du petit côté du rectangle (1) et au milieu du grand côté du rectangle (2).

FIG. 4. - Définition du rectangle chargé de l'exemple 2.

Exemple 3 :

Le tassement du point P de la figure 5 est la somme du tassement au coin des quatre rectangles numérotés 1, 2, 3 et 4.

FIG. 5. - Définition du rectangle chargé de l'exemple 3.

Exemple 4 :

Le tassement du point P de la figure 6 est la somme algébrique du tassement au coin des quatre rectangles comme cela est illustré sur la figure.

FIG. 6. - Décomposition permettant le calcul du tasse-

ment en P.

CALCUL DU TASSEMENT MOYEN

La moyenne du tassement de tous les points de l'aire rectangulaire chargée uniformément s'écrit :

(10) $w_m = \frac{pB}{E} P_{Hm}$

ou bien :

(11)
$$w_m = \frac{pH}{E} P'_{Hm}$$

avec :

wm : tassement moyen ; p : pression exercée par la fondation sur le sol ; B : largeur de la fondation ; H : épaisseur de la couche de sol ; E : module d'Young du sol ; P_{Hm} : coefficient sans dimensions dépendant de ν, L/B et H/B ; P'_{Hm} : coefficient sans dimensions dépendant de ν, L/B et B/H ; ν : coefficient de Poisson du sol ; L : longueur de la fondation. 133
Bien entendu, les formules (10) et (11) fournissent la même valeur du tassement et, par conséquent, les coefficients P_{Hm} et P'_{Hm} sont liés par :

(12)
$$P_{Hm}^{\prime} = \frac{B}{H} P_{Hm}$$

Néanmoins, il est intéressant de donner <u>deux formules</u> différentes car la <u>première</u> est commode lorsque H/B est grand et la <u>seconde</u> lorsque B/H est grand.

On montre que le <u>tassement moyen</u> est très voisin du tassement qu'aurait, sur le même sol, <u>une fondation rigide</u> de même dimension et supportant la même charge (la notion de tassement moyen est illustrée par la Fig. 7).

FIG. 7. — Définition du tassement moyen w_m : le volume hachuré engendré par le tassement de la charge uniforme est égal à w_m LB.

Exemple 5 :

Considérons un immeuble de Melbourne (Australie) fondé sur un radier assimilable à un rectangle de 47,5 m (156 ft) de long et 15,5 m (51 ft) de large reposant sur une couche compressible de 21 m (69 ft) d'épaisseur. Les propriétés de cette couche, mesurées dans un essai de chargement lent, sont : E = 5,2 bars (76 p.s.i.) et v = 0,4. La charge moyenne exercée par la fondation sur le sol est de 0,45 bar (6,5 p.s.i.). Quel tassement peut-on prévoir ?

Pour L/B = 3 et H/B = 1,35, la table correspondant à v = 0,4 donne P_{Hm} = 0,61. On en déduit le tassement par la formule (10) :

$$w_{\rm m} = \frac{0.45 \times 15.5}{5.2} \times 0.61 = 0.82 \text{ m} = 82 \text{ cm}$$
$$= \frac{6.5 \times 51}{76} \times 0.61 = 2.66 \text{ ft} = 32 \text{ in.}$$

On obtiendrait la même valeur à l'aide de la formule (11) avec $P'_{Hm} = 0,455$ (valeur lue dans les tables pour v = 0,4, L/B = 3 et B/H = 0,75).

Il est intéressant de noter que la valeur observée a été de 31 in. (79 cm).

CALCUL DES CONTRAINTES

La contrainte σ_z provoquée dans le sol par la charge rectangulaire définie plus haut est donnée par les formules suivantes : 1. A la verticale du centre du rectangle chargé :

(13) $\sigma_{z} = 4 p K_{HO}$

2. A la verticale d'un coin du rectangle chargé :

(14)
$$\sigma_z = p K_{HO}$$

avec :

- p : contrainte normale uniforme exercée par la charge rectangulaire ;
- K_{HO} : coefficient sans dimensions dépendant de v, z/H, L/B et β^{\prime} ;
 - ν : coefficient de Poisson du sol ;
 - z : profondeur à laquelle on calcule σ_{g} ;
 - H : épaisseur de la couche de sol (Fig. 1) ;
- L, B : longueur et largeur du rectangle chargé ;
 - β' : coefficient sans dimensions valant :

 $\beta' = B/2H$ dans le cas du centre,

 $\beta' = B/H$ dans le cas du coin.

Les valeurs numériques de K_{HO} sont données dans cinq graphiques, pour v = 0,4 seulement. Toutefois, on pourra les utiliser avec une bonne approximation pour toute autre valeur du coefficient de Poisson car son influence sur σ_{e} est très faible.

Exemple 6 :

136

Reprenons l'immeuble de l'exemple 5 et calculons la contrainte σ_z à la verticale du coin à 17 m (55 ft) de profondeur dans le cas v = 0, 4.

On a : $\frac{L}{B} = \frac{47.5}{15.5} = \frac{156}{51} = 3$ $\beta' = \frac{B}{H} = \frac{15.5}{21} = \frac{51}{69} = 0.74$ $\frac{z}{H} = \frac{17}{21} = \frac{55}{69} = 0.8$ d'où : K_{HO} = 0.225. On calcule alors σ_z à l'aide de la formule (14) : $\sigma_z = 0.45 \times 0.225 = 0.10$ bar $= 6.5 \times 0.225 = 1.45$ p.s.i.

TABLES ET GRAPHIQUES

57
77
82
l

	1		α									
		1	1.5	2	2.5	3	4	5	10	œ		
	0	0	0	0	0	0	0	0	0	0		
	0.1	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025		
	0.2	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050		
	0.3	0.076	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075		
	0.4	0.102	0.101	0.101	0.101	0.101	0.101	0.101	0.101	0.100		
	0.5	0.129	0.128	0.127	0.127	0.127	0.127	0.127	0.127	0.127		
	0.6	0.155	0.154	0.153	0.153	0.152	0.152	0.152	0.152	0.152		
	0.7	0.181	0.181	0.180	0.180	0.179	0.179	0.179	0.179	0.178		
	0.8	0.205	0.206	0.205	0.205	0.204	0.204	0.204	0.204	0.203		
0	0.9	0.228	0.232	0.231	0.231	0.230	0.230	0.230	0.230	0.229		
	1	0.249	0.254	0.253	0.253	0.252	0.252	0.252	0.252	0.252		
	1.1	0.269	0.276	0.276	0.275	0.275	0.274	0.274	0.274	0.274		
β	1.2	0.286	0.296	0.299	0.299	0.299	0.298	0.298	0.298	0.296		
	1.3	0.302	0.316	0.319	0.319	0.319	0.318	0.318	0.318	0.317		
	1.4	0,316	0.333	0.338	0.338	0.338	0.337	0.337	0.336	0.336		
	1.5	0.328	0.350	0.356	0.356	0.356	0.355	0.355	0.354	0.354		
	2	0.380	0.416	0.432	0.436	0.438	0.436	0.436	0.436	0.435		
	2.5	0.413	0.463	0.485	0. 498	0.500	0.503	0.503	0.503	0.501		
	3	0.436	0.496	0.524	0.545	0.553	0.557	0.558	0.559	0.556		
	4	0.466	0.538	0.583	0.609	0.623	0.637	0.644	0.646	0.644		
	5	0.485	0.565	0.620	0.650	0.670	0.695	0.710	0.715	0.714		
	10	0.520	0.620	0.690	0.740	0.780	0.830	0.870	0.920	0.933		
	20	0.540	0.650	0.730	0.790	0.840	0.910	0.960	1.100	1.154		
	∞	0.561	0.679	0.766	0.835	0.892	0.982	1.052	1.272	∞		

		α									
		1	1.5	2	2.5	3	4	5	10	8	
	0	0	0	0	0	0	0	0	0	0	
	0.1	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	
	0.2	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.045	
	0.3	0.068	0.068	0.068	0.068	0.068	0.068	0.068	0.068	0.068	
	0.4	0.090	0.090	0.090	0.090	0.090	0.090	0.090	0.090	0.090	
	0.5	0.114	0.114	0.114	0.114	0.114	0.114	0.114	0.114	0.113	
	0.6	0.139	0.139	0.138	0.138	0.138	0.138	0.138	0.138	0.137	
	0.7	0.164	0.164	0.163	0.163	0.163	0.163	0.163	0.163	0.161	
	0.8	0.188	0.188	0.186	0.186	0.185	0.185	0.185	0.185	0.183	
0	0.9	0.209	0.210	0.208	0.206	0.206	0.206	0.206	0.206	0.203	
	1	0.230	0.232	0.231	0.229	0.229	0.229	0.229	0.229	0.226	
	1.1	0.250	0.255	0.254	0.254	0.253	0.253	0.253	0.253	0.250	
β	1.2	0.267	0.274	0.274	0.274	0.273	0.272	0.272	0.272	0.270	
	1.3	0.282	0.292	0.292	0.291	0.291	0.290	0.290	0.290	0.287	
	1.4	0.296	0.310	0.311	0.311	0.312	0.312	0.313	0.313	0.309	
	1.5	0.310	0.326	0.328	0.328	0.328	0.326	0.326	0.326	0.321	
	2	0.360	0.392	0.404	0.406	0.406	0.406	0.404	0.404	0.398	
	2.5	0.395	0.438	0.458	0.468	0.470	0.470	0.470	0.468	0.463	
	3	0.418	0.472	0.499	0.515	0.523	0.528	0.528	0.522	0.512	
	4	0.449	0.517	0.558	0.579	0.594	0.606	0.609	0.612	0.599	
	5	0.470	0.545	0.595	0.625	0.645	0.665	0.675	0.680	0.665	
	10	0.500	0.600	0.660	0.710	0.750	0.790	0.830	0.870	0.875	
	20	0.520	0.626	0.700	0.760	0.800	0.870	0.920	1.045	1.087	
	∞	0.539	0.652	0.735	0.802	0.856	0.943	1.010	1.221	∞	

141

		α									
		1	1.5	2	2.5	3	4	5	10	8	
	0	0	0	0	0	0	0	0	0	0	
	0.1	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	
	0.2	0.037	0.037	0.037	0.037	0.037	0.037	0.037	0.037	0.037	
	0.3	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	
	0.4	0.076	0.076	0.076	0.076	0.076	0.076	0.076	0.076	0.076	
	0.5	0.098	0.096	0.095	0.095	0.095	0.095	0.095	0.095	0.095	
	0.6	0.121	0.119	0.118	0.118	0.118	0.117	0.117	0.117	0.117	
	0.7	0.142	0.140	0.139	0.139	0.139	0.138	0.138	0.138	0.138	
	0.8	0.163	0.161	0.160	0.160	0.160	0.159	0.159	0.159	0.159	
0	0.9	0.183	0.182	0.181	0.180	0.179	0.179	0.178	0.178	0.177	
	1	0.202	0.200	0.199	0.198	0.197	0.197	0.196	0.196	0.195	
	1.1	0.219	0.221	0.220	0.219	0.218	0.218	0.218	0.217	0.215	
β	1.2	0.236	0.239	0.239	0.238	0.237	0.237	0.237	0.236	0.234	
	1.3	0.252	0.257	0.257	0.256	0.255	0.255	0.254	0.253	0.250	
	1.4	0.266	0.274	0.274	0.273	0.272	0.272	0.271	0.270	0.267	
	1.5	0.279	0.289	0.290	0.289	0.288	0.288	0.286	0.284	0.281	
	2	0.328	0.350	0.364	0.364	0.362	0.362	0.360	0.360	0.356	
	2.5	0.360	0.398	0.415	0.418	0.420	0.418	0.415	0.415	0.413	
	3	0.384	0.432	0.456	0.463	0.468	0.469	0.465	0.463	0.462	
	4	0.416	0.478	0.511	0.532	0.542	0.550	0.551	0.545	0.544	
	5	0.435	0.505	0.550	0.575	0.590	0.605	0.615	0.610	0.605	
	10	0.470	0.562	0.620	0.670	0.700	0.750	0.780	0.810	0.804	
	20	0.490	0.590	0.660	0.715	0.760	0.820	0.870	0.980	1.005	
	∞	0.511	0.618	0.697	0.760	0.812	0.894	0.957	1.158	∞	

			α									
		1	1.5	2	2.5	3	4	5	10	~		
	0	0	0	0	0	0	0	0	0	0		
	0.1	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012		
	0.2	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023		
	0.3	0.036	Q.036	0.036	0.036	0.036	0.036	0.036	0.036	0.036		
	0.4	0.052	0.050	0.050	0.049	0.049	0.049	0.049	0.049	0.049		
	0.5	0.068	0.065	0.065	0.064	0.064	0.064	0.064	0.064	0.064		
	0.6	0.086	0.082	0.080	0.080	0.080	0.080	0.080	0.080	0.079		
	0.7	0.104	0.100	0.098	0.098	0.098	0.096	0.096	0.096	0.096		
	0.8	0.124	0.118	0.116	0.115	0.115	0.114	0.114	0.114	0.112		
0	0.9	0.142	0.136	0.133	0.131	0.131	0.130	0.130	0.130	0.129		
	1	0.159	0.153	0.150	0.147	0.147	0.146	0.146	0.145	0.145		
	1.1	0.176	0.170	0.167	0.164	0.164	0.162	0.162	0.162	0.162		
β	1.2	0.192	0.189	0.185	0.182	0.180	0.178	0.178	0.178	0.178		
	1.3	0.207	0.207	0.202	0.198	0.196	0.195	0.194	0.194	0.194		
	1.4	0.221	0.222	0.217	0.214	0.212	0.210	0.209	0.209	0.208		
	1.5	0.234	0.237	0.234	0.229	0.227	0.225	0.224	0.224	0.223		
	2	0.282	0.300	0.302	0.298	0.296	0.292	0.290	0.288	0.288		
	2.5	0.315	0.345	0.355	0.355	0.353	0.348	0.345	0.343	0.342		
	3	0.340	0.378	0.395	0.399	0.399	0.397	0.392	0.387	0.386		
	4	0.372	0.425	0.451	0.468	0.472	0.473	0.472	0.461	0.460		
	5	0.390	0.450	0.490	0.510	0.520	0.530	0.535	0.520	0.519		
	10	0.430	0.510	0.570	0.610	0.640	0.680	0.710	0.720	0.701		
	20	0.450	0.540	0.610	0.655	0.695	0.750	0.800	0.895	0.886		
	∞	0.471	0.570	0.643	0.701	0.749	0.825	0.884	I.068	∞		

			α									
		1	1.5	2	2.5	3	4	5	10	8		
	0	0	0	0	0	0	0	0	0	0		
	0.1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
	0.2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
	0.3	0.006	0.004	0.003	0.003	0.003	0.003	0.003	0.003	0.003		
	0.4	0.015	0.011	0.009	0.009	0.009	0.009	0.009	0.009	0.009		
	0.5	0.026	0.020	0.018	0.016	0.016	0.016	0.016	0.016	0.016		
	0.6	0.039	0.030	0.029	0.028	0.027	0.025	0.025	0.025	0.025		
	0.7	0.054	0.044	0.040	0.040	0.037	0.037	0.035	0.035	0.035		
	0.8	0.070	0.058	0.054	0.054	0.049	0.048	0.047	0.047	0.047		
0	0.9	0.089	0.074	0.068	0.066	0.063	0.061	0.060	0.060	0.059		
	1	0.106	0.092	0.084	0.080	0.077	0.076	0.074	0.074	0.072		
	1.1	0.122	0.108	0.100	0.095	0.091	0.088	0.086	0.086	0.085		
β	1.2	0.138	0.126	0.116	0.110	0.106	0.102	0.102	0.100	0.098		
	1.3	0.152	0.142	0.131	0.125	0.120	0.116	0.115	0.113	0.111		
	1.4	0.166	0.157	0.146	0.139	0.135	0.129	0.128	0.126	0.123		
	1.5	0.180	0.172	0.162	0.154	0.148	0.142	0.140	0.138	0.135		
	2	0.228	0.234	0.228	0.220	0.212	0.204	0.198	0.194	0.190		
	2.5	0.260	0.280	0.280	0.275	0.268	0.258	0.250	0.243	0.235		
	3	0.286	0.313	0.320	0.318	0.314	0.304	0.296	0.284	0.274		
	4	0.320	0.356	0.376	0.384	0.384	0.376	0.370	0.350	0.342		
	5	0.340	0.385	0.415	0.430	0.435	0.435	0.430	0.405	0.395		
	10	0.380	0.450	0.500	0.540	0.560	0.600	0.620	0.600	0.556		
	20	0.400	0.480	0.535	0.585	0.615	0.670	0.705	0.780	0.721		
	∞	0.421	0.509	0.575	0.626	0.669	0.737	0.789	0.954	∞		

147

			α								
		1	1.5	2	2.5	3	4	5	10	8	
	0	0	0	0	0	0	0	0	0	0	
	0.1	0.052	0.062	0.069	0.074	0.078	0.083	0.087	0.092	0.093	
	0.2	0.097	0.113	0.124	0.130	0.134	0.139	0.142	0.143	0.143	
	0.3	0.134	0.154	0.164	0.171	0.174	0.176	0.177	0.177	0.177	
	0.4	0.165	0.185	0.194	0.199	0.200	0.201	0.201	0.201	0.201	
	0.5	0.190	0.208	0.216	0.218	0.219	0.218	0.218	0.218	0.218	
β	0.6	0.209	0.225	0.230	0.231	0.231	0.231	0.230	0.230	0.230	
	0.7	0.224	0.237	0.240	0.240	0.240	0.239	0.239	0.238	0.238	
	0.8	0.236	0.245	0.246	0.246	0.246	0.245	0.245	0.245	0.244	
	0.9	0.244	0.251	0.251	0.250	0.250	0.249	0.249	0.249	0.249	
	1	0.249	0.254	0.253	0.253	0.252	0.252	0.252	0.252	0.252	
	1.5	0.258	0.257	0.256	0.256	0.255	0.255	0.255	0.255	0.254	
	2	0.257	0.255	0.254	0.254	0.254	0.254	0.254	0.254	0.253	
	2.5	0.255	0.253	0.253	0.253	0.253	0.252	0.252	0.252	0.250	
	3	0.253	0.252	0.252	0.252	0.252	0.252	0.252	0.252	0.250	
	4	0.251	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250	
	5	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250	
	8	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250	

			α								
		1	1.5	2	2.5	3	4	5	10	8	
	0	0	0	0	0	0	0	0	0	0	
	0.1	0.050	0.060	0.066	0.071	0.075	0.079	0.083	0.087	0.087	
	0.2	0.094	0.109	0.119	0.125	0.129	0.133	0.135	0.136	0.133	
	0.3	0.129	0.147	0.157	0.162	0.165	0.167	0.167	0.166	0.163	
	0.4	0.158	0.175	0.183	0.187	0.188	0.188	0.188	0.187	0.185	
	0.5	0.180	0.196	0.202	0.203	0.203	0.203	0.202	0.202	0.199	
β	0.6	0.198	0.211	0.214	0.214	0.214	0.213	0.213	0.213	0.210	
	0.7	0.210	0.220	0.221	0.221	0.221	0.220	0.220	0.220	0.217	
	0.8	0.219	0.226	0.226	0.226	0.225	0.224	0.224	0.224	0.222	
	0.9	0.226	0.230	0.229	0.228	0.227	0.227	0.227	0.227	0.224	
	1	0.230	0.232	0.231	0.229	0.229	0.229	0.229	0.229	0.226	
	1.5	0.233	0.231	0.229	0.229	0.229	0.229	0.229	0.229	0.228	
	2	0.228	0.227	0.227	0.227	0.227	0.227	0.227	0.227	0.226	
	2.5	0.226	0.225	0.225	0.225	0.225	0.225	0.225	0.225	0.225	
	3	0.225	0.225	0.225	0.225	0.225	0.225	0.225	0.225	0.225	
	4	0.225	0.225	0.225	0.225	0.225	0.225	0.225	0.225	0.225	
	5	0.225	0.225	0.225	0.225	0.225	0.225	0.225	0.225	0.225	
	∞	0.225	0.225	0.225	0.225	0.225	0.225	0.225	0.225	0.225	

ŝ

			α								
		1	1.5	2	2.5	3	4	5	10	8	
	0	0	0	0	0	0	0	0	0	0	
	0.1	0.047	0.056	0.062	0.067	0.070	0.075	0.078	0.081	0.080	
	0.2	0.087	0.101	0.110	0.115	0.118	0.121	0.123	0.122	0.121	
	0.3	0.119	0.135	0.143	0.147	0.149	0.150	0.149	0.148	0.148	
	0.4	0.144	0.159	0.166	0.167	0.168	0.167	0.166	0.166	0.165	
	0.5	0.164	0.175	0.182	0.182	0.181	0.181	0.180	0.180	0.178	
β	0.6	0.178	0.189	0.190	0.190	0.189	0.189	0.188	0.187	0.185	
	0.7	0.187	0.195	0.195	0.194	0.193	0.193	0.192	0.191	0.189	
	0.8	0.196	0.198	0.198	0.197	0.196	0.196	0.195	0.194	0.192	
	0.9	0.199	0.200	0.199	0.198	0.197	0.197	0.197	0.196	0.194	
	1	0.202	0.200	0.199	0.198	0.197	0.197	0.196	0.196	0.195	
	1.5	0.199	0.196	0.194	0.194	0.194	0.193	0.193	0.193	0.193	
	2	0.195	0.191	0.190	0.190	0.190	0.189	0.189	0.189	0.189	
	2.5	0.189	0.188	0.187	0.187	0.187	0.187	0.187	0.187	0.187	
	3	0.188	0.187	0.186	0.186	0.186	0.186	0.186	0.186	0.186	
	4	0.186	0.186	0.186	0.186	0.186	0.186	0.186	0.186	0.186	
	5	0.186	0.186	0.186	0.186	0.186	0.186	0.186	0.186	0.186	
	00	0.186	0.186	0.186	0.186	0.186	0.186	0.186	0.186	0.186	

153

154

			α								
		1	1.5	2	2.5	3	4	5	10	œ	
	0	0	0	0	0	0	0	0	0	0	
	0.1	0.043	0.051	0.057	0.061	0.064	0.068	0.071	0.072	0.070	
	0.2	0.078	0.090	0.098	0.102	0.104	0.106	0.107	0.104	0.104	
	0.3	0.106	0.119	0.125	0.127	0.128	0.128	0.126	0.124	0.124	
	0.4	0.126	0.138	0.142	0.142	0.141	0.139	0.138	0.137	0.137	
	0.5	0.141	0.150	0.151	0.149	0.148	0.146	0.145	0.144	0.144	
β	0.6	0.151	0.156	0.155	0.152	0.151	0.149	0.148	0.147	0.147	
	0.7	0.157	0.159	0.155	0.153	0.151	0.150	0.149	0.149	0.149	
	0.8	0.160	0.158	0.154	0.152	0.150	0.149	0.149	0.149	0.149	
	0.9	0.160	0.156	0.152	0.150	0.149	0.148	0.148	0.147	0.146	
	1	0.159	0.153	0.150	0.147	0.147	0.146	0.146	0.145	0.145	
	1.5	0.145	0.139	0.136	0.136	0.135	0.135	0.135	0.135	0.135	
	2	0.136	0.130	0.129	0.128	0.127	0.127	0.127	0.127	0.127	
	2.5	0.129	0.125	0.124	0.123	0.123	0.123	0.123	0.123	0.123	
	3	0.124	0.122	0.121	0.121	0.121	0.121	0.121	0.121	0.121	
	4	0.119	0.118	0.118	0.118	0.118	0.118	0.118	0.118	0.118	
	5	0.117	0.117	0.117	0.117	0.117	0.117	0.117	0.117	0.117	
	∞	0.117	0.117	0.117	0.117	0.117	0.117	0.117	0.117	0.117	

			α									
		1	1.5	2	2.5	3	4	5	10	8		
	0	0	0	0	0	0	0	0	0	0		
	0.1	0.038	0.045	0.050	0.054	0.056	0.060	0.062	0.060	0.056		
	0.2	0.068	0.077	0.083	0.086	0.087	0.087	0.086	0.081	0.079		
	0.3	0.090	0.099	0.103	0.103	0.102	0.099	0.097	0.092	0.090		
	0.4	0.104	0.112	0.112	0.110	0.107	0.103	0.100	0.097	0.094		
	0.5	0.114	0.117	0.114	0.110	0.106	0.102	0.099	0.097	0.095		
ß	0.6	0.119	0.117	0.111	0.106	0.102	0.098	0.096	0.095	0.094		
	0.7	0.119	0.113	0.105	0.100	0.097	0.093	0.092	0.090	0.090		
	0.8	0.116	0.107	0.098	0.093	0.090	0.087	0.087	0.085	0.084		
	0.9	0.112	0.100	0.091	0.086	0.084	0.081	0.081	0.079	0.077		
	1	0.106	0.092	0.084	0.080	0.077	0.076	0.074	0.074	0.072		
	1.5	0.074	0.059	0.054	0.052	0.050	0.048	0.048	0.048	0.048		
	2	0.052	0.039	0.035	0.032	0.031	0.031	0.031	0.031	0.031		
	2.5	0.038	0.027	0.023	0.022	0.022	0.022	0.022	0.022	0.022		
	3	0.027	0.018	0.015	0.015	0.015	0.015	0.015	0.015	0.015		
	4	0.010	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004		
	5	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
	8	0	0	0	0	0	0	0	0	0		

R.

2

3

159

	\checkmark	
$(P_{H_{n}})$	∇	= 0

				L/B									
			1	1.5	2	2.5	3	4	5	10	8		
		0 0.1 0.2	0 0.098 0.187	0 0.099 0.190	0 0.099 0.191	0 0.099 0.192	0 0.099 0.193	0 0.099 0.193	0 0.099 0.194	0 0.099 0.193	0 0.098 0.191		
		0.3 0.4 0.5	0.267 0.338 0.400	0.274 0.350 0.418	0.277 0.356 0.427	0.279 0.359 0.433	0.281 0.361 0.437	0.282 0.365 0.441	0.283 0.366 0.444	0.284 0.366 0.449	0.284 0.366 0.446		
		0.6 0.7 0.8	0.454 0.500 0.540	0.479 0.533 0.581	0.492 0.550 0.602	0.499 0.560 0.615	0.504 0.567 0.623	0.511 0.575 0.634	0.515 0.580 0.640	0.522 0.590 0.653	0.520 0.588 0.651		
Н		0.9 1 1.1	0.575 0.604 0.630	0.624 0.661 0.695	0.649 0.691 0.729	0.665 0.710 0.750	0.675 0.722 0.765	0.688 0.737 0.782	0.696 0.746 0.793	0.711 0.765 0.814	0.713 0.772 0.821		
4	B	1.2 1.3 1.4	0.653 0.672 0.690	0.724 0.751 0.774	0.764 0.794 0.822	0.787 0.821 0.852	0.803 0.839 0.872	0.823 0.861 0.897	0.836 0.875 0.912	0.860 0.903 0.943	0.869 0.912 0.956		
		1.5 2 2.5	0.705 0.762 0.800	0.796 0.876 0.928	0.848 0.944 1.010	0.880 0.990 1.065	0.902 1.022 1.105	0.930 1.062 1.158	0.946 1.086 1.188	0.980 1.136 1.255	0.998 1.170 1.308		
		3 4 5	0.825 0.858 0.875	0.963 1.012 1.040	1.056 1.117 1.155	1.121 1.194 1.240	1.168 1.252 1.305	1.230 1.331 1.395	1.268 1.382 1.460	1.350 1.491 1.590	1.416 1.591 1.743		
		10 20 ∞	0.900 0.920 0.946	1.090 1.120 1.148	1.220 1.260 1.300	1.320 1.370 1.424	1.410 1.480 1.527	1.540 1.630 1.694	1.630 1.740 1.826	1.850 2.030 2.246	2.177 2.612 ∞		

÷

2

					(PHn		=0.2			
			1	1.5	2	2.5	^L /B	4	5	10	
		0	0	0	0	0	0	0	0	0	0
		0.1 0.2	0.088	0.089 0.172	0.089 0.173	0.089 0.174	0.089 0.175	0.089 0.175	0.089 0.175	0.089	0.087 0.170
		0.3 0.4 0.5	0.243 0.311 0.370	0.249 0.320 0.385	0.251 0.325 0.392	0.253 0.327 0.396	0.254 0.329 0.399	0.256 0.332 0.403	0.256 0.333 0.405	0.257 0.335 0.410	0.252 0.330 0.403
		0.6 0.7 0.8	0.422 0.467 0.507	0.444 0.496 0.543	0.454 0.510 0.561	0.460 0.518 0.571	0.464 0.524 0.578	0.470 0.531 0.587	0.473 0.535 0.592	0.479 0.544 0.603	0.471 0.532 0.595
H		0.9 1 1.1	0.541 0.571 0.597	0.584 0.621 0.654	0.606 0.647 0.685	0.619 0.663 0.702	0.627 0.673 0.714	0.638 0.685 0.729	0.645 0.693 0.738	0.658 0.709 0.757	0.652 0.707 0.756
	B	1.2 1.3 1.4	0.619 0.639 0.657	0.684 0.710 0.734	0.718 0.749 0.777	0.739 0.772 0.803	0.753 0.788 0.820	0.769 0.807 0.841	0.780 0.819 0.855	0.801 0.842 0.881	0.801 0.843 0.883
		1.5 2 2.5	0.672 0.730 0.766	0.755 0.835 0.887	0.802 0.900 0.964	0.831 0.940 1.016	0.850 0.969 1.053	0.873 1.004 1.099	0.888 1.025 1.127	0.917 1.068 1.184	0.921 1.083 1.213
		3 4 5	0.789 0.816 0.830	0.923 0.965 0.989	1.010 1.067 1.100	1.070 1.140 1.181	1.114 1.194 1.243	1.170 1.267 1.327	1.205 1.314 1.384	1.276 1.411 1.504	1.319 1.493 1.635
		10 20 ∞	0.860 0.880 0.908	1.040 1.070 1.102	1.160 1.210 1.248	1.270 1.320 1.367	1.345 1.420 1.466	1.450 1.555 1.626	1.535 1.680 1.753	1.720 1.970 2.156	2.050 2.468 ∞

161

- 4-3

1	-
4.	24
	\mathbf{J}

	P _{Hm} V=0.3											
-			1	1.5	2	2.5	3	4	5	10	~	
		0).1).2	0 0.075 0.145	0 0.075 0.146	0 0.075 0.147	0 0.075 0.147	0 0.075 0.147	0 0.075 0.147	0 0.075 0.147	0 0.075 0.147	0 0.073 0.145	
).3).4).5	0.210 0.271 0.327	0.214 0.278 0.337	0.215 0.280 0.342	0.216 0.282 0.345	0.217 0.283 0.347	0.218 0.285 0.350	0.218 0.286 0.351	0.218 0.287 0.354	0.217 0.284 0.349	
		0.6 0.7 0.8	0.376 0.419 0.457	0.391 0.440 0.485	0.399 0.450 0.498	0.403 0.456 0.506	0.406 0.460 0.511	0.409 0.465 0.518	0.412 0.468 0.521	0.416 0.474 0.529	0.413 0.471 0.525	
	1	0.9 1 .1	0.490 0.519 0.544	0.525 0.561 0.593	0.541 0.581 0.617	0.551 0.592 0.630	0.558 0.601 0.640	0.566 0.610 0.651	0.571 0.616 0.658	0.580 0.628 0.672	0.576 0.624 0.670	
5	B 1 1 1	.2 .3 .4	0.567 0.586 0.604	0.621 0.647 0.671	0.650 0.679 0.706	0.665 0.697 0.727	0.676 0.709 0.740	0.690 0.725 0.757	0.697 0.734 0.768	0.713 0.751 0.788	0.711 0.752 0.791	
	1	.5 2 2.5	0.620 0.678 0.715	0.692 0.772 0.825	0.731 0.828 0.893	0.754 0.862 0.938	0.769 0.886 0.968	0.788 0.914 1.008	0.799 0.930 1.030	0.822 0.964 1.073	0.825 0.982 1.104	
		3 4 5	0.741 0.770 0.785	0.862 0.909 0.935	0.939 1.001 1.040	0.992 1.066 1.110	1.031 1.115 1.165	1.079 1.180 1.245	1.108 1.221 1.295	1.164 1.301 1.400	1.206 1.370 1.498	
	1 2	10 20 ∞	0.830 0.840 0.861	0.980 1.010 1.045	1.110 1.145 1.183	1.200 1.260 1.296	1.280 1.340 1.390	1.390 1.485 1.542	1.470 1.585 1.662	1.650 1.870 2.044	1.894 2.293 ∞	

8

_

\bigcirc	
Hm V=0.4	

					\smile					
						L/B				
		1	1.5	2	2.5	3	4	5	10	8
H	0 0.1 0.2	0 0.051 0.105	0 0.050 0.104	0 0.050 0.104	0 0.050 0.103	0 0.050 0.103	0 0.049 0.102	0 0.049 0.102	0 0.049 0.101	0 0.048 0.099
	0.3 0.4 0.5	0.159 0.213 0.261	0.158 0.213 0.265	0.158 0.212 0.265	0.158 0.212 0.265	0.157 0.212 0.265	0.157 0.212 0.266	0.157 0.212 0.266	0.155 0.210 0.265	0.153 0.208 0.260
	0.6 0.7 0.8	0.305 0.347 0.383	0.313 0.357 0.399	0.315 0.361 0.406	0.315 0.363 0.408	0.316 0.365 0.410	0.317 0.367 0.413	0.317 0.367 0.414	0.318 0.369 0.417	0.312 0.364 0.411
	0.9 1 1.1	0.416 0.445 0.470	0.437 0.472 0.504	0.445 0.484 0.519	0.450 0.490 0.526	0.454 0.493 0.531	0.457 0.497 0.536	0.459 0.500 0.539	0.463 0.505 0.546	0.457 0.501 0.540
4	B 1.2 1.3 1.4	0.493 0.512 0.530	0.532 0.558 0.581	0.550 0.579 0.606	0.559 0.590 0.619	0.565 0.597 0.628	0.572 0.605 0.637	0.576 0.610 0.642	0.583 0.619 0.653	0.579 0.615 0.648
	1.5 2 2.5	0.546 0.606 0.645	0.603 0.684 0.738	0.631 0.728 0.795	0.646 0.754 0.830	0.656 0.770 0.855	0.666 0.788 0.883	0.672 0.798 0.898	0.685 0.820 0.925	0.680 0.823 0.935
	3 4 5	0.672 0.705 0.725	0.777 0.828 0.860	0.842 0.907 0.950	0.886 0.962 1.015	0.917 1.003 1.060	0.954 1.057 1.125	0.974 1.089 1.170	1.012 1.146 1.245	1.029 1.180 1.301
	10 20 ∞	0.755 0.775 0.795	0.900 0.935 0.964	1.005 1.055 1.092	1.085 1.160 1.196	1.150 1.220 1.283	1.245 1.350 1.423	1.320 1.440 1.534	1.475 1.700 1.887	1.666 2.034 ∞

١

ĥ.,

	$\mathbf{N}_{\mathbf{y}}$	-0.5
(FH	m	=0.5
		1

			L/B								
			1	1.5	2	2.5	3	4	5	10	8
		0 0.1 0.2	0 0.014 0.046	0 0.012 0.040	0 0.011 0.037	0 0.010 0.035	0 0.009 0.034	0 0.009 0.032	0 0.008 0.031	0 0.008 0.028	0 0.007 0.026
		0.3 0.4 0.5	0.088 0.133 0.177	0.079 0.123 0.168	0.075 0.117 0.161	0.072 0.113 0.157	0.070 0.110 0.153	0.067 0.106 0.149	0.065 0.104 0.146	0.061 0.098 0.140	0.055 0.090 0.129
		0.6 0.7 0.8	0.219 0.258 0.293	0.211 0.253 0.293	0.204 0.247 0.288	0.200 0.243 0.283	0.196 0.239 0.280	0.192 0.234 0.275	0.189 0.231 0.272	0.182 0.224 0.265	0.167 0.209 0.248
		0.9 1 1.1	0.325 0.354 0.379	0.329 0.363 0.393	0.326 0.362 0.395	0.322 0.359 0.394	0.319 0.356 0.391	0.315 0.352 0.387	0.312 0.350 0.385	0.305 0.344 0.378	0.284 0.320 0.353
	B	1.2 1.3 1.4	0.402 0.422 0.441	0.422 0.448 0.471	0.426 0.455 0.481	0.426 0.456 0.485	0.424 0.455 0.485	0.421 0.452 0.482	0.418 0.450 0.481	0.412 0.445 0.475	0.386 0.418 0.449
		1.5 2 2.5	0.457 0.518 0.558	0.493 0.576 0.630	0.506 0.604 0.673	0.511 0.618 0.695	0.512 0.624 0.708	0.511 0.630 0.723	0.509 0.632 0.728	0.504 0.630 0.733	0.476 0.597 0.695
		3 4 5	0.586 0.622 0.645	0.671 0.724 0.755	0.7 22 0.789 0.830	0.753 0.834 0.885	0.773 0.864 0.925	0.793 0.899 0.975	0.803 0.918 1.000	0.814 0.945 1.045	0.778 0.914 1.021
		10 20 ∞	0.675 0.690 0.710	0.805 0.830 0.861	0.890 0.935 0.975	0.960 1.015 1.068	1.015 1.075 1.145	1.085 1.175 1.271	1.140 1.250 1.370	1.265 1.455 1.685	1.346 1.674 ∞

P' _{Hm}	V=	0

						L/B				
-		1	1.5	Ż	2.5	3	4	5	10	8
В/н	0 0.1 0.2	0 0.090 0.175	0 0.109 0.208	0 0.122 0.231	0 0.132 0.248	0 0.141 0.261	0 0.154 0.279	0 0.163 0.292	0 0.185 0.318	0 0.218 0.349
	0.3 0.4 0.5	0.251 0.320 0.381	0.295 0.371 0.438	0.324 0.404 0.472	0.345 0.426 0.495	0.360 0.442 0.511	0.281 0.463 0.531	0.393 0.475 0.543	0.421 0.502 0.568	0.450 0.522 0.585
	0.6 0.7 0.8	0.437 0.486 0.530	0.496 0.546 0.590	0.531 0.581 0.623	0.553 0.602 0.643	0.568 0.617 0.657	0.587 0.634 0.674	0.599 0.645 0.685	0.622 0.668 0.706	0.635 0.675 0.712
	0.9 1 1.5	0.569 0.604 0.728	0.628 0.661 0.774	0.660 0.691 0.797	0.679 0.710 0.810	0.692 0.722 0.820	0.708 0.737 0.831	0.718 0.746 0.838	0.738 0.765 0.852	0.744 0.772 0.855
	2 2.5 3	0.800 0.844 0.874	0.836 0.874 0.899	0.854 0.889 0.912	0.865 0.898 0.919	0.873 0.903 0.925	0.882 0.912 0.931	0.888 0.916 0.935	0.897 0.923 0.938	0.892 0.916 0.929
	4 5 10	0.912 0.934 0.980	0.931 0.949 0.988	0.940 0.957 0.991	0.946 0.962 0.992	0.950 0.965 0.992	0.955 0.967 0.991	0.957 0.968 0.990	0.957 0.966 0.989	0.946 0.955 0.976
	20 50 ∞	1.000 1.000 1	0.986 0.995 1							

	P'_{Hm} V=0.2										
	1.5	2	2.5	3	4	5	10	8			
0	0	0	0	0	0	0	0	0			
086	0.104	0.116	0.127	0.134	0.145	0.154	0.172	0.205			
166	0.198	0.220	0.236	0.249	0.266	0.277	0.301	0.327			
240	0.282	0.310	0.329	0.344	0.363	0.374	0.398	0.415			
306	0.355	0.386	0.407	0.421	0.440	0.451	0.474	0.485			
365	0.418	0.450	0.470	0.484	0.502	0.513	0.534	0.541			
417	0.472	0.504	0.523	0.537	0.553	0.563	0.583	0.588			
463	0.518	0.549	0.568	0.580	0.596	0.605	0.624	0.625			
504	0.558	0.587	0.605	0.616	0.631	0.640	0.657	0.657			

- 1	() and ()	and successive successive successive	All the second s	the second se		and a second high second s	the second s	Concerning the second se	Contraction of the local data		the second se
		0 0.1 0.2	0 0.086 0.166	0 0.104 0.198	0 0.116 0.220	0 0.127 0.236	0 0.134 0.249	0 0.145 0.266	0 0.154 0.277	0 0.172 0.301	0 0.205 0.327
		0.3 0.4 0.5	0.240 0.306 0.365	0.282 0.355 0.418	0.310 0.386 0.450	0.329 0.407 0.470	0.344 0.421 0.484	0.363 0.440 0.502	0.374 0.451 0.513	0.398 0.474 0.534	0.415 0.485 0.541
		0.6 0.7 0.8	0.417 0.463 0.504	0.472 0.518 0.558	0.504 0.549 0.587	0.523 0.568 0.605	0.537 0.580 0.616	0.553 0.596 0.631	0.563 0.605 0.640	0.583 0.624 0.657	0.588 0.625 0.657
B		0.9 1 1.5	0.540 0.571 0.680	0.592 0.621 0.719	0.620 0.647 0.738	0.636 0.663 0.749	0.647 0.673 0.757	0.660 0.685 0.766	0.669 0.693 0.772	0.685 0.709 0.784	0.683 0.707 0.771
	н	2 2.5 3	0.740 0.776 0.800	0.769 0.800 0.819	0.784 0.811 0.829	0.793 0.818 0.836	0.799 0.824 0.840	0.806 0.829 0.845	0.811 0.833 0.848	0.819 0.839 0.851	0.806 0.825 0.837
		4 5 10	0.829 0.848 0.885	0.844 0.860 0.891	0.853 0.866 0.893	0.857 0.871 0.895	0.860 0.873 0.894	0.864 0.875 0.893	0.866 0.876 0.892	0.865 0.874 0.892	0.849 0.855 0.874
		20 50 ∞	0.903 0.900 0.9	0.903 0.900 0.9	0.902 0.900 0.9	0.902 0.900 0.9	0.902 0.900 0.9	0.902 0.900 0.9	0:902 0.900 0.9	0.902 0.900 0.9	0.884 0.893 0.9

2

2.5

3

4

5

10

20

50

8

0.653

0.677

0.695

0.713

0.723

0.745

0.752

0.745

0.743

0.674

0.694

0.707

0.721

0.729

0.748

0.751

0.744

0.743

0.684

0.701

0.713

0.725

0.734

0.749

0.749

0.744

0.743

0.690

0.705

0.716

0.729

0.736

0.748

0.748

0.744

0.743

0.694

0.708

0.719

0.730

0.737

0.748

0.748

0.744

0.743

0.699

0.713

0.722

0.732

0.737

0.746

0.748

0.744

0.743

0.702

0.715

0.724

0.732

0.736

0.745

0.748

0.744

0.743

0.707

0.717

0.723

0.730

0.734

0.744

0.748

0.744

0.743

^B/_H

	- 2	1		-
				•
Y				5
18-	-	-	-	-

	P'_{Hm} V=0.3												
	1	1.5	2	2.5	3	4	5	10	8				
0	0	0	0	0	0	0	0	0	0				
0.1	0.083	0.098	0.111	0.120	0.128	0.139	0.147	0.165	0.189				
0.2	0.157	0.187	0.208	0.222	0.233	0.249	0.259	0.280	0.299				
0.3	0.226	0.264	0.289	0.306	0.319	0.336	0.345	0.365	0.384				
0.4	0.286	0.330	0.357	0.375	0.387	0.403	0.412	0.429	0.442				
0.5	0.339	0.386	0.414	0.431	0.443	0.457	0.465	0.482	0.491				
0.6	0.385	0.434	0.461	0.477	0.488	0.501	0.508	0.524	0.530				
0.7	0.426	0.474	0.499	0.514	0.524	0.536	0.544	0.558	0.563				
0.8	0.461	0.508	0.532	0.545	0.554	0.566	0.573	0.586	0.589				
0.9	0.492	0.536	0.558	0.571	0.579	0.590	0.596	0.609	0.608				
1	0.519	0.561	0.581	0.592	0.601	0.610	0.616	0.628	0.624				
1.5	0.607	0.636	0.651	0.659	0.664	0.671	0.675	0.683	0.677				

173

0.698

0.709

0.715

0.722

0.726

0.734

0.739

0.741

0.743

1	-
	- 24
- T	

			P'										
			1	1.5	2	2.5	$\frac{L}{B}$	4	5	10			
		0 0.1 0.2	0 0.076 0.145	0 0.090 0.172	0 0.100 0.190	0 0.109 0.203	0 0.115 0.212	0 0.125 0.225	0 0.132 0.234	0 0.148 0.249	0 0.167 0.260		
		0.3 0.4 0.5	0.206 0.258 0.303	0.239 0.295 0.342	0.260 0.318 0.364	0.275 0.332 0.377	0.285 0.342 0.385	0.298 0.353 0.394	0.305 0.359 0.399	0.318 0.370 0.410	0.329 0.374 0.412		
В		0.6 0.7 0.8	0.342 0.374 0.402	0.380 0.411 0.436	0.401 0.429 0.452	0.412 0.439 0.460	0.419 0.445 0.465	0.427 0.452 0.471	0.432 0.456 0.474	0.440 0.463 0.481	0.440 0.460 0.478		
		0.9 1 1.5	0.426 0.445 0.500	0.457 0.472 0.513	0.470 0.484 0.518	0.477 0.490 0.521	0.481 0.493 0.523	0.486 0.497 0.525	0.489 0.500 0.526	0.495 0.505 0.528	0.492 0.501 0.522		
Ľ	Н	2 2.5 3	0.522 0.532 0.532	0.529 0.532 0.531	0.529 0.531 0.529	0.530 0.531 0.528	0.530 0.530 0.528	0.531 0.529 0.527	0.531 0.529 0.526	0.529 0.524 0.520	0.522 0.515 0.509		
		4 5 10	0.528 0.523 0.508	0.524 0.519 0.504	0.522 0.517 0.501	0.521 0.515 0.498	0.520 0.514 0.496	0.518 0.511 0.493	0.516 0.509 0.492	0.510 0.504 0.489	0.500 0.494 -0.482		
		20 50 ∞	0.493 0.474 0.467	0.488 0.472 0.467	0.485 0.471 0.467	0.484 0.471 0.467	0.483 0.471 0.467	0.481 0.471 0.467	0.481 0.471 0.467	0.481 0.471 0.467	0.474 0.469 0.467		

4-3

Hm V=0.5	

.

						L/B				
-		1	1.5	2	2.5	3	4	5	10	8
	0	0	0	0	0	0	0	0	0	0
	0.1	0.068	0.080	0.089	0.096	0.101	0.108	0.114	0.127	0.135
	0.2	0.129	0.151	0.166	0.177	0.185	0.195	0.200	0.209	0.204
	0.3	0.180	0.208	0.225	0.235	0.242	0.250	0.254	0.259	0.250
	0.4	0.223	0.252	0.269	0.278	0.283	0.289	0.291	0.293	0.278
	0.5	0.259	0.288	0.302	0.309	0.312	0.315	0.316	0.315	0.298
	0.6	0.288	0.315	0.326	0.330	0.332	0.333	0.332	0.330	0.310
	0.7	0.312	0.334	0.342	0.345	0.345	0.344	0.342	0.339	0.318
	0.8	0.330	0.348	0.353	0.352	0.352	0.349	0.348	0.343	0.321
в/ _Н	0.9 1 1.5	0.344 0.354 0.368	0.357 0.363 0.359	0.359 0.362 0.349	0.358 0.359 0.343	0.356 0.356 0.337	0.352 0.352 0.330	0.350 0.349 0.326	0.344 0.343 0.315	0.322 0.320 0.293
	2 2.5 3	0.353 0.332 0.307	0.335 0.308 0.281	0.322 0.293 0.265	0.313 0.283 0.255	0.306 0.276 0. 248	0.298 0.266 0.239	0.292 0.261 0.233	0.279 0.246 0.218	0.258 0.225 0.198
	4	0.265	0.236	0.221	0.211	0.204	0.195	0.189	0.174	0.157
	5	0.228	0.201	0.186	0.177	0.170	0.161	0.155	0.142	0.130
	10	0.135	0.117	0.106	0.098	0.092	0.086	0.083	0.076	0.070
	20	0.076	0.061	0.054	0.051	0.048	0.044	0.043	0.042	0.039
	50	0.027	0.020	0.018	0.017	0.017	0.017	0.017	0.016	0.015
	∞	0	0	0	0	0	0	0	0	0

BIBLIOGRAPHIE

Les calculs qui nous ont permis d'obtenir les coefficients P_H , P_H , P_{Hm} et P'_{Hm} ont fait l'objet de trois publications [2, 3, 4]. Signalons qu'indépendamment, Ueshita et Meyerhof [6] ont obtenu des valeurs du tassement très voisines de notre coefficient P_H . Par ailleurs, l'exemple de l'immeuble de Melbourne est emprunté à Moore et Spencer [5].

Enfin, le coefficient K_{HO} est dû à Burmister [1].

REFERENCES

- [4] D.M. BURMISTER "Stress and displacement characteristics of a twolayer rigid base soil system : influence diagrams and pratical applications". <u>Proceedings</u> <u>Highway Research Board</u> (1959), 773-814.
- [2] J.P. GIROUD "tassement d'une couche de sol supportant une fondation rectangulaire uniformément chargée". La technique des Travaux, 331 (sept.-oct. 1971), 274-285.
- [3] J.P. GIROUD "Settlement of Rectangular Foundation on Soil Layer". Journal of the Soil Mechanics and Foundations Division, A.S.C.E., 98, SM 1 (January 1972), 149-154.
- [4] J.P. GIROUD "Tassement d'une fondation rectangulaire sur une couche de sol compressible". La technique des Travaux (à paraître).
- [5] P.J. MOORE and G.K. SPENCER "Settlement of Building on Deep Compressible soil". Journal of the Soil Mechanics and Foundations Division, A.S.C.E., 95, SM 3 (May 1969), 769-790.
- [6] K. UESHITA and G.G. MEYERHOF "Surface Displacement of an Elastic Layer Under Uniformly Distributed Loads", <u>Highway Research Record</u>, 228 (1968), 1-10.

SECTION 4-4

FONDATION RECTANGULAIRE EXERÇANT UNE CHARGE INCLINÉE UNIFORMÉMENT RÉPARTIE

(Semelles) sur une couche de sol homogène d'épaisseur finie

SOMMAIRE

- Définition du sol
- Définition de la charge
- Calcul direct du tassement
- Calcul des contraintes
- Tables
- Bibliographie

DEFINITION DU SOL

Le sol est composé d'une <u>couche homogène</u> d'épaisseur H reposant sur un <u>substratum indéformable</u> auquel elle adhère parfaitement.

DEFINITION DE LA CHARGE

La charge est <u>uniformément répartie sur un rectangle</u> de longueur L et larlargeur B (Fig. 1). Sa composante normale est p et sa composante tangentielle, s. Son <u>inclinaison</u> est δ , positive dans le sens trigonométrique :

(1) $\delta = \operatorname{Arctg} \frac{s}{p}$

Le côté B et la composante tangentielle s sont parallèles à l'axe Ox.

FIG. 1. - Définition du sol et de la charge.

La longueur L (L > B) est parallèle à l'axe Oy. Le centre du rectangle est 0. Les deux coins d'abscisse négative sont désignés par C₁ et les deux coins d'abscisse positive par C₂.

CALCUL DIRECT DU TASSEMENT

Le tassement aux coins et au centre du rectangle chargé est donné par :

(2)
$$w_{C} = \frac{pB}{E} P_{HC} \pm \frac{sB}{E} S_{HC} \begin{cases} + pour C_{2} \\ - pour C_{1} \end{cases}$$

(3) $w_0 = \frac{pB}{E} P_{HO}$

avec :

- p : composante normale de la contrainte exercée par la fondation sur le sol ;
- s : composante tangentielle de la contrainte exercée par la fondation sur le sol ;
- E : module d'Young du sol ;
- B : largeur de la fondation ;

 P_{HO} , P_{HC} et S_{HC} : coefficients sans dimensions dont les valeurs numériques sont données dans des tables en fonction de v, L/B et H/B;

- v : coefficient de Poisson du sol ;
- L : longueur de la fondation ;
- H : épaisseur de la couche de sol.

Exemple 1 :

Considérons une semelle de 3,6 m (12 ft) de long et 1,8 m (6 ft) de large. Elle exerce sur le sol une charge uniformément répartie de 1,1 bar (2 300 lb/ sq. ft) inclinée de 20° (la composante tangentielle de cette charge étant parallèle au petit côté du rectangle). Quel est le tassement des coins C_2 (voir Fig. 1), sachant que la couche de sol a 5,4 m (18 ft) d'épaisseur et que ses propriétés sont : E = 36 bars (75 000 lb/sq. ft) et v = 0,3 ?

Calculons d'abord les deux composantes de la charge :

p = 1,1 × cos 20° = 1,03 bar, = 2 300 × cos 20° = 2 160 lb/sq. ft, s = 1,1 × sin 20° = 0,38 bar, = 2 300 × sin 20° = 790 lb/sq. ft.

Avec L/B = 2, H/B = 3 et v = 0,3, on lit dans les tables : P = 0.45 S = 0.12

$$P_{HC} = 0,45 \qquad P_{HC} = 0,12.$$
D'où :

$$w_{C} = \frac{1,03 \times 1,8}{36} \times 0,45 + \frac{0,38 \times 1,8}{36} \times 0,12$$
(Signe + pour C₂)

$$w_{C} = 0,025 \text{ m} = 2,5 \text{ cm},$$

$$w_{C} = \frac{2,160 \times 6}{75,000} \times 0,45 + \frac{790 \times 6}{75,000} \times 0,12$$

$$= 0,085 \text{ ft} = 1 \text{ in}.$$

CALCUL DES CONTRAINTES

Les contraintes σ_x , σ_z et τ_{zx} sont données par les formules suivantes : <u>A la verticale d'un coin du rectangle</u> :

- (4) $\sigma_z = p K_z^p \pm s K_z^s$,
- (5) $\sigma_{x} = p K_{x}^{p} \pm s K_{x}^{s}$
- (6) $\tau_{zx} = \pm p K_{zx}^{p} + s K_{zx}^{s}$; (Signe + pour C₂ et - pour C₁)

A la verticale du centre du rectangle :

- (7) $\sigma_z = p K_z^o$ (8) $\sigma_x = p K_x^o$
- (9) $\tau_{zx} = s K_{zx}^{o}$,

avec :

p, s : composantes normale et tangentielle de la charge ;

- K : coefficients sans dimensions dont les valeurs sont données dans des tables en fonction de v, L/B, H/B et \bar{z} /B ;
- v : coefficient de Poisson du sol ;
- L, B : longueur et largeur du rectangle ;
 - H : épaisseur de la couche de sol ;
 - ź : profondeur du point où l'on calcule les contraintes.

Section 4-4

Exemple 2 :

Reprenons l'exemple précédent et calculons σ_z à la verticale du centre à 3,6 m (12 ft) de profondeur.

Pour L/B = 2, H/B = 3 et v = 0,3, on lit dans les tables : $K_z^o = 0,22$. D'où : $\sigma_z = 1,03 \times 0,22 = 0,226$ bar $\sigma_z = 2 160 \times 0,22 = 475$ lb/sq. ft.

TABLES ET GRAPHIQUES

 Calcul du tassement		
Coefficients : P _{HO} , P _{HO} , S _{HC}	p.	190
 Calcul des contraintes	10	
Coefficients : K_{z}^{p} , K_{x}^{p} , K_{zx}^{p}	p.	191-193
K_z^s, K_x^s, K_{zx}^s	p.	194-196
$K_{z}^{o}, K_{x}^{o}, K_{zx}^{o} \dots \dots \dots$	p.	197-199

189

1		U = 0.15				$\mathcal{V} = 0.30$			U = 0.45			
	Н/в	P _{HO}	P _{HC}	S _{HC}	Рно	P _{HC}	S _{HC}	P _{HO}	P _{HC}	S _{HC}		
1.0	0.50	0.45	0.12	0.05	0.38	0.10	0.03	0.25	0.05	0.01		
	1.00	0.71	0.23	0.10	0.63	0.20	0.07	0.50	0.13	0.04		
	2.00	0.88	0.36	0.13	0.81	0.32	0.10	0.68	0.26	0.06		
	3.00	0.95	0.42	0.13	0.87	0.38	0.10	0.74	0.31	0.07		
	5.00	1.00	0.47	0.14	0.92	0.43	0.11	0.80	0.36	0.08		
2.0	0.50	0.46	0.12	0.05	0.38	0.10	0.03	0.23	0.04	0.01		
	1.00	0.81	0.24	0.10	0.71	0.20	0.07	0.53	0.12	0.03		
	2.00	1.11	0.41	0.14	1.00	0.36	0.11	0.82	0.27	0.07		
	3.00	1.23	0.51	0.15	1.12	0.45	0.12	0.94	0.36	0.08		
	5.00	1.33	0.60	0.17	1.23	0.54	0.13	1.05	0.45	0.09		
5.0	0.50	0.47	0.12	0.05	0.38	0.09	0.03	0.22	0.04	0.01		
	1.00	0.82	0.24	0.10	0.70	0.19	0.07	0.49	0.11	0.03		
	2.00	1.23	0.41	0.14	1.09	0.35	0.11	0.84	0.25	0.07		
	3.00	1.45	0.53	0.16	1.31	0.46	0.12	1.06	0.35	0.08		
	5.00	1.67	0.68	0.17	1.52	0.61	0.13	1.27	0.48	0.10		

(d'après MILOVIC et TOURNIER)

L/B=	:1	1	'= 0.'	15		V = 0	.30	1	じ = 0	.45
H/B	z/	\mathbf{K}_{z}^{p}	κ ^p _x	K^{p}_{zx}	K_z^p	κ ^p _x	K_{zx}^{p}	K ^p _z	κ ^p _x	κ ^p _{zx}
1.0	0.00 0.20 0.40 0.60 0.80 1.00	0.250 0.250 0.250 0.250 0.250 0.241 0.227	0.083 0.061 0.039 0.028 0.028 0.040	0.000 0.121 0.105 0.079 0.059 0.056	0.250 0.250 0.250 0.250 0.238 0.220	0.112 0.921 0.072 0.064 0.071 0.094	0.000 0.119 0.103 0.079 0.064 0.073	0.250 0.250 0.250 0.250 0.239 0.215	0.134 0.122 0.110 0.112 0.133 0.176	0.000 0.114 0.098 0.075 0.070 0.096
2.0	0.00 0.20 0.40 0.80 1.20 1.60 2.00	0.250 0.250 0.243 0.210 0.170 0.141 0.118	0.131 0.089 0.052 0.010 0.001 0.003 0.021	0.000 0.136 0.128 0.080 0.044 0.024 0.019	0.250 0.250 0.244 0.211 0.172 0.142 0.117	0.163 0.117 0.076 0.028 0.016 0.023 0.050	0.000 0.136 0.127 0.079 0.043 0.025 0.024	0.250 0.250 0.245 0.214 0.178 0.149 0.120	0.190 0.142 0.098 0.048 0.037 0.053 0.098	0.000 0.135 0.126 0.077 0.042 0.025 0.030
3.0	0.00 0.20 0.40 0.80 1.20 1.60 2.00 2.50 3.00	0.250 0.249 0.241 0.203 0.157 0.121 0.096 0.077 0.064	$\begin{array}{c} 0.146\\ 0.100\\ 0.060\\ -0.013\\ -0.003\\ -0.007\\ -0.005\\ 0.001\\ 0.011\\ \end{array}$	0.000 0.138 0.131 0.084 0.049 0.028 0.017 0.009 0.007	$\begin{array}{c} 0.250 \\ 0.249 \\ 0.241 \\ 0.203 \\ 0.158 \\ 0.122 \\ 0.098 \\ 0.078 \\ 0.064 \end{array}$	0.181 0.129 0.083 0.028 0.008 0.003 0.003 0.004 0.012 0.027	0.000 0.138 0.131 0.084 0.049 0.028 0.016 0.009 0.009	0.250 0.249 0.242 0.204 0.160 0.125 0.102 0.083 0.066	0.213 0.156 0.106 0.044 0.020 0.014 0.016 0.028 0.054	0.000 0.137 0.130 0.084 0.048 0.027 0.016 0.010 0.011
5.0	0.00 0.20 0.40 0.80 1.20 1.60 2.00 2.50 3.00 3.50 4.00 4.50 5.00	$\begin{array}{c} 0.250\\ 0.249\\ 0.241\\ 0.200\\ 0.152\\ 0.114\\ 0.086\\ 0.063\\ 0.049\\ 0.040\\ 0.034\\ 0.029\\ 0.026\end{array}$	$\begin{array}{c} 0.156\\ 0.107\\ 0.066\\ 0.016\\ -0.001\\ -0.006\\ -0.007\\ -0.006\\ -0.005\\ -0.003\\ -0.003\\ -0.001\\ 01001\\ 0.005 \end{array}$	0.000 0.138 0.132 0.086 0.051 0.030 0.019 0.011 0.007 0.004 0.003 0.002 0.002	$\begin{array}{c} 0.250\\ 0.249\\ 0.241\\ 0.200\\ 0.153\\ 0.114\\ 0.087\\ 0.064\\ 0.050\\ 0.040\\ 0.034\\ 0.030\\ 0.026\end{array}$	$\begin{array}{c} 0.192\\ 0.137\\ 0.090\\ 0.032\\ 0.009\\ 0.001\\ -0.002\\ -0.002\\ -0.002\\ -0.001\\ 0.003\\ 0.003\\ 0.006\\ 0.011 \end{array}$	$\begin{array}{c} 0.000\\ 0.138\\ 0.132\\ 0.086\\ 0.051\\ 0.030\\ 0.019\\ 0.011\\ 0.006\\ 0.004\\ 0.003\\ 0.002\\ 0.002\\ 0.002 \end{array}$	$\begin{array}{c} 0.250\\ 0.249\\ 0.240\\ 0.201\\ 0.153\\ 0.115\\ 0.087\\ 0.065\\ 0.051\\ 0.042\\ 0.036\\ 0.032\\ 0.027\\ \end{array}$	0.227 0.167 0.113 0.047 0.019 0.008 0.004 0.003 0.004 0.003 0.004 0.006 0.009 0.014 0.022	0.000 0.138 0.131 0.086 0.051 0.030 0.018 0.011 0.006 0.004 0.003 0.002 0.003

(d'après MILOVIC et TOURNIER)

4-4

191

L/B=	2	I	<i>v</i> = 0.	15		$\mathcal{V}=0$.30	1) = 0	.45
Н/в	²/ _B	κ ^p _z	κ ^p _x	κ ^p _{zx}	κ ^p _z	κ ^p _x	K_{zx}^{p}	κ ^p _z	κ ^p _x	\mathbf{K}_{zx}^{p}
1.0	0.00 0.20 0.40 0.60 0.80 1.00	0.250 0.250 0.250 0.250 0.248 0.241	0.085 0.062 0.041 0.029 0.030 0.042	0.000 0.119 0.104 0.079 0.061 0.061	0.250 0.250 0.250 0.250 0.244 0.232	0.108 0.089 0.072 0.067 0.076 0.099	0.000 0.118 0.103 0.081 0.069 0.080	0.250 0.250 0.250 0.250 0.240 0.223	0.129 0.118 0.112 0.118 0.141 0.183	0.000 0.113 0.097 0.078 0.075 0.107
2.0	0.00 0.20 0.40 0.80 1.20 1.60 2.00	0.250 0.250 0.248 0.230 0.205 0.183 0.163	0.147 0.100 0.059 0.012 0.002 0.005 0.029	0.000 0.136 0.130 0.086 0.051 0.031 0.026	0.250 0.250 0.249 0.231 0.207 0.183 0.160	0.164 0.116 0.076 0.030 0.020 0.033 0.068	0.000 0.136 0.129 0.085 0.051 0.032 0.033	0.250 0.250 0.250 0.234 0.212 0.188 0.160	0.176 0.129 0.092 0.051 0.048 0.072 0.131	0.000 0.135 0.127 0.082 0.049 0.033 0.042
3.0	0.00 0.20 0.40 1.20 1.60 2.00 2.50 3.00	0.250 0.250 0.246 0.222 0.190 0.162 0.139 0.119 0.103	0.172 0.118 0.072 0.017 0.004 0.009 0.007 0.001 0.018	0.000 0.139 0.134 0.093 0.059 0.037 0.023 01014 0.012	0.250 0.250 0.246 0.222 0.191 0.163 0.141 0.120 0.102	0.192 0.135 0.088 0.031 0.009 01004 0.007 0.019 0.044	0.000 0.139 0.134 0.092 0.058 0.036 0.023 0.014 0.014	0.250 0.250 0.246 0.224 0.194 0.167 0.146 0.125 0.104	$\begin{array}{c} 0.207 \\ 0.149 \\ 0.102 \\ 0.045 \\ 0.024 \\ 0.020 \\ 0.026 \\ 0.046 \\ 0.085 \end{array}$	0.000 0.139 0.133 0.091 0.057 0.035 0.022 0.015 0.019
5.0	0.00 0.20 0.40 0.80 1.20 1.60 2.00 2.50 3.00 3.50 4.00 4.50 5.00	$\begin{array}{c} 0.250 \\ 0.250 \\ 0.245 \\ 0.218 \\ 0.183 \\ 0.151 \\ 0.124 \\ 0.099 \\ 0.081 \\ 0.068 \\ 0.059 \\ 0.053 \\ 0.047 \end{array}$	$\begin{array}{c} 0.189\\ 0.131\\ 0.083\\ 0.023\\ -0.001\\ -0.009\\ -0.011\\ -0.010\\ -0.008\\ -0.005\\ -0.002\\ 0.002\\ 0.008\\ \end{array}$	0.000 0.140 0.135 0.095 0.062 0.040 0.027 0.017 0.011 0.007 0.005 0.004 0.003	$\begin{array}{c} 0.250 \\ 0.250 \\ 0.245 \\ 0.219 \\ 0.184 \\ 0.151 \\ 0.125 \\ 0.100 \\ 0.082 \\ 0.069 \\ 0.060 \\ 0.053 \\ 0.047 \end{array}$	$\begin{array}{c} 0.211\\ 0.150\\ 0.100\\ 0.037\\ 0.010\\ 0.000\\ -0.003\\ -0.003\\ -0.003\\ -0.001\\ 0.002\\ 0.006\\ 0.011\\ 0.020\\ \end{array}$	$\begin{array}{c} 0.000\\ 0.140\\ 0.135\\ 0.095\\ 0.062\\ 0.040\\ 0.027\\ 0.016\\ 0.011\\ 0.007\\ 0.005\\ 0.004\\ 0.004\\ \end{array}$	$\begin{array}{c} 0.250 \\ 0.250 \\ 0.245 \\ 0.219 \\ 0.184 \\ 0.152 \\ 0.126 \\ 0.102 \\ 0.085 \\ 0.073 \\ 0.064 \\ 0.057 \\ 0.049 \end{array}$	0.232 0.168 0.116 0.050 0.021 0.010 0.006 0.005 0.007 0.011 0.017 0.026 0.040	0.000 0.140 0.135 0.095 0.061 0.040 0.026 0.016 0.010 0.007 0.005 0.004 0.005

(d'après MILOVIC et TOURNIER)

L/B=	= 5	1) = 0.	15		$\mathcal{V} = 0$.30	1	<i>V</i> = 0	.45
H/B	z/	\mathbf{K}_{z}^{p}	κ ^p _x	K_{zx}^{p}	K ^p _z	κ ^p _x	K_{zx}^{p}	K_z^p	κ ^p _x	κ ^p _{zx}
1.0	0.00 0.20 0.40 0.60 0.80 1.00	0.250 0.250 0.250 0.250 0.250 0.247 0.239	0.082 0.062 0.041 0.029 0.030 0.042	0.000 0.118 0.103 0.079 0.061 0.060	0.250 0.250 0.250 0.250 0.244 0.233	0.103 0.088 0.072 0.067 0.076 0.100	0.000 0.117 0.103 0.081 0.069 0.081	0.250 0.250 0.250 0.250 0.242 0.226	0.124 0.120 0.114 0.120 0.143 0.185	0.000 0.113 0.098 0.080 0.077 0.109
2.0	0.00 0.20 0.40 0.80 1.20 1.60 2.00	0.250 0.250 0.247 0.230 0.207 0.188 0.172	$\begin{array}{c} 0.146\\ 0.101\\ 0.061\\ 0.012\\ -0.001\\ 0.006\\ 0.030\\ \end{array}$	0.000 0.135 0.120 0.086 0.052 0.032 0.028	0.250 0.250 0.247 0.230 0.208 0.188 0.168	0.154 0.112 0.073 0.029 0.020 0.035 0.072	0.000 0.134 0.085 0.052 0.034 0.035	0.250 0.250 0.248 0.232 0.211 0.190 0.166	0.158 0.121 0.087 0.050 0.050 0.077 0.136	0.000 0.133 0.126 0.082 0.050 0.036 0.046
3.0	$\begin{array}{c} 0.00\\ 0.20\\ 0.40\\ 0.80\\ 1.20\\ 1.60\\ 2.00\\ 2.50\\ 3.00 \end{array}$	0.250 0.249 0.245 0.224 0.197 0.173 0.155 0.139 0.126	$\begin{array}{c} 0.177\\ 0.124\\ 0.077\\ 0.019\\ -0.004\\ -0.010\\ -0.008\\ 0.002\\ 0.022\\ \end{array}$	0.000 0.138 0.133 0.093 0.060 0.038 0.025 0.016 0.014	0.250 0.249 0.246 0.225 0.197 0.174 0.156 0.138 0.123	$\begin{array}{c} 0.182\\ 0.131\\ 0.086\\ 0.029\\ 0.008\\ 0.004\\ 0.009\\ 0.024\\ 0.053\\ \end{array}$	0.000 0.137 0.133 0.092 0.059 0.038 0.025 0.017 0.018	0.250 0.249 0.246 0.223 0.199 0.176 0.159 0.141 0.123	0.184 0.136 0.093 0.040 0.022 0.022 0.022 0.032 0.056 0.100	0.000 0.137 0.132 0.091 0.058 0.037 0.025 0.018 0.023
5.0	$\begin{array}{c} 0.00\\ 0.20\\ 0.40\\ 0.80\\ 1.20\\ 1.60\\ 2.00\\ 2.50\\ 3.00\\ 3.50\\ 4.00\\ 4.50\\ 5.00\\ \end{array}$	$\begin{array}{c} 0.250 \\ 0.249 \\ 0.245 \\ 0.221 \\ 0.191 \\ 0.164 \\ 0.142 \\ 0.122 \\ 0.107 \\ 0.096 \\ 0.088 \\ 0.081 \\ 0.075 \end{array}$	$\begin{array}{c} 0.203\\ 0.146\\ 0.095\\ 0.031\\ 0.002\\ -0.009\\ -0.012\\ -0.012\\ -0.012\\ -0.010\\ -0.007\\ -0.002\\ 0.004\\ 0.013 \end{array}$	0.000 0.139 0.135 0.096 0.064 0.043 0.030 0.020 0.013 0.009 0.007 0.005 0.005	0.250 0.249 0.245 0.221 0.191 0.164 0.143 0.123 0.108 0.097 .0.089 0.082 0.075	$\begin{array}{c} 0.209\\ 0.153\\ 0.102\\ 0.038\\ 0.010\\ -0.001\\ -0.004\\ -0.004\\ -0.004\\ 0.010\\ 0.004\\ 0.010\\ 0.019\\ 0.032 \end{array}$	0.000 0.139 0.135 0.096 0.064 0.043 0.030 0.019 0.013 0.009 0.007 0.006 0.007	0.250 0.249 0.245 0.222 0.192 0.166 0.145 0.125 0.111 0.101 0.092 0.085 0.076	0.214 0.158 0.109 0.045 0.018 0.009 0.006 0.008 0.012 0.019 0.028 0.042 0.062	0.000 0.139 0.135 0.096 0.063 0.042 0.029 0.019 0.013 0.009 0.007 0.007 0.007

(d'après MILOVIC et TOURNIER)

193

L/B=	: 1	I) = 0.	15		$\mathcal{V} = 0$.30	I	' = 0	.45
H/B	²/ _B	K ^s _z	K ^s _x	K ^s zx	K ^s _z	K ^s	K ^s zx	K ^s z	K ^s	K ^s _{zx}
1.0	0.10 0.20 0.40 0.60 0.80 1.00	0.157 0.152 0.142 0.130 0.118 0.108	0.496 0.303 0.126 0.053 0.022 0.019	0.223 0.200 0.157 0.126 0.108 0.100	0.157 0.151 0.143 0.131 0.118 0.105	0.507 0.313 0.136 0.064 0.038 0.045	0.223 0.200 0.155 0.123 0.102 0.090	0.157 0.151 0.146 0.135 0.123 0.105	0.515 0.321 0.146 0.077 0.059 0.086	0.096 0.104 0.076 0.051 0.037 0.044
2.0	0.10 0120 0.40 0.80 1.20 1.60 2.00	0.155 0.150 0.133 0.089 0.057 0.040 0.031	0.527 0.328 0.146 0.033 0.007 0.001 0.006	0.217 0.188 0.135 0.069 0.042 0.033 0.029	0.155 0.150 0.133 0.089 0.058 0.041 0.031	0.537 0.337 0.153 0.037 0.010 0.005 0.013	0.217 0.189 0.135 0.069 0.041 0.031 0.024	0.155 0.150 0.133 0.090 0.060 0.044 0.032	0.547 0.346 0.159 0.041 0.013 0.010 0.027	0.217 0.189 0.136 0.069 0.041 0.028 0.017
3.0	$\begin{array}{c} 0.10\\ 0.20\\ 0.40\\ 0.80\\ 1.20\\ 1.60\\ 2.00\\ 2.50\\ 3.00 \end{array}$	0.155 0.150 0.132 0.087 0.052 0.032 0.022 0.015 0.012	$\begin{array}{c} 0.531 \\ 0.332 \\ 0.150 \\ 0.036 \\ 0.009 \\ 0.002 \\ 0.000 \\ 0.000 \\ 0.000 \end{array}$	0.216 0.186 0.131 0.061 0.031 0.019 0.015 0.014 0.013	0.155 0.150 0.132 0.087 0.052 0.033 0.022 0.015 0.012	$\begin{array}{c} 0.543\\ 0.342\\ 0.156\\ 0.039\\ 0.011\\ 0.003\\ 0.001\\ 0.001\\ 0.005\\ \end{array}$	0.216 0.186 0.130 0.061 0.031 0.019 0.015 0.013 0.010	0.155 0.150 0.132 0.087 0.053 0.033 0.023 0.017 0.012	0.553 0.351 0.163 0.042 0.013 0.004 0.002 0.003 0.010	0.216 0.186 0.131 0.062 0.032 0.020 0.015 0.011 0.006
5.0	$\begin{array}{c} 0.10\\ 0.20\\ 0.40\\ 0.80\\ 1.20\\ 16.0\\ 2.00\\ 2.50\\ 3.00\\ 3.50\\ 4.00\\ 4.50\\ 5.00 \end{array}$	$\begin{array}{c} 0.155\\ 0.150\\ 0.132\\ 0.086\\ 0.051\\ 0.031\\ 0.019\\ 0.012\\ 0.008\\ 0.005\\ 0.004\\ 0.003\\ 0.003\\ 0.003 \end{array}$	$\begin{array}{c} 0.533\\ 0.334\\ 0.151\\ 0.037\\ 0.010\\ 0.003\\ 0.000\\ 0.$	$\begin{array}{c} 0.215\\ 0.185\\ 0.129\\ 0.058\\ 0.027\\ 0.014\\ 0.009\\ 0.006\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ \end{array}$	$\begin{array}{c} 0.155\\ 0.150\\ 0.132\\ 0.086\\ 0.051\\ 0.031\\ 0.019\\ 0.012\\ 0.008\\ 0.006\\ 0.004\\ 0.003\\ 0.003\\ 0.003\end{array}$	$\begin{array}{c} 0.545\\ 0.344\\ 0.158\\ 0.040\\ 0.012\\ 0.004\\ 0.001\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.001 \end{array}$	0.215 0.185 0.129 0.058 0.027 0.014 0.009 0.006 0.005 0.005 0.005 0.005 0.004 0.004	$\begin{array}{c} 0.155\\ 0.150\\ 0.132\\ 0.086\\ 0.051\\ 0.031\\ 0.020\\ 0.012\\ 0.008\\ 0.006\\ 0.005\\ 0.004\\ 0.003\\ \end{array}$	0.556 0.353 0.164 0.044 0.013 0.005 0.002 0.001 0.000 0.000 0.001 0.001 0.002	$\begin{array}{c} 0.215\\ 0.185\\ 0.129\\ 0.058\\ 0.027\\ 0.014\\ 0.009\\ 0.006\\ 0.005\\ 0.005\\ 0.005\\ 0.004\\ 0.004\\ 0.004\\ 0.002 \end{array}$

(d'après MILOVIC et TOURNIER)

L/B=	2	l) = 0.º	15		$\mathcal{V} = 0$.30	I	v = 0	.45
H/B	z/	κ ^s _z	K ^s _x	K ^s _{zx}	K²	K ^s _x	K ^s _{zx}	K ^s	K ^s	K ^s _{zx}
1.0	0.10 0.20 0.40 0.60 0.80 1.00	0.158 0.155 0.147 0.139 0.131 0.125	0.509 0.312 0.132 0.056 0.024 0.022	0.230 0.210 0.172 0.145 0.128 0.121	0.158 0.155 0.148 0.139 0.130 0.120	0.515 0.318 0.140 0.068 0.042 0.051	0.229 0.208 0.168 0.139 0.119 0.106	0.158 0.155 0.150 0.142 0.133 0.118	0.517 0.323 0.149 0.082 0.066 0.096	0.229 0.207 0.165 0.132 0.018 0.089
2.0	0.10 0.20 0.40 0.80 1.20 1.60 2.00	0.156 0.151 0.137 0.100 0.071 0.055 0.045	0.552 0.348 0.160 0.039 0.008 0.001 0.008	0.222 0.195 0.145 0.084 0.058 0.049 0.045	0.156 0.151 0.137 0.100 0.072 0.056 0.045	0.556 0.352 0.163 0.042 0.011 0.007 0.019	0.224 0.195 0.145 0.083 0.057 0.045 0.036	0.156. 0.151 0.138 0.102 0.074 0.059 0.046	0.558 0.354 0.165 0.045 0.016 0.015 0.037	0.223 0.196 0.146 0.084 0.056 0.041 0.025
3.0	$\begin{array}{c} 0.10\\ 0.20\\ 0.40\\ 0.80\\ 1.20\\ 1.60\\ 2.00\\ 2.50\\ 3.00 \end{array}$	0.156 0.151 0.136 0.096 0.064 0.044 0.032 0.024 0.019	$\begin{array}{c} 0.560 \\ 0.355 \\ 0.166 \\ 0.043 \\ 0.012 \\ 0.002 \\ 0.000 \\ 0.000 \\ 0.003 \end{array}$	0.220 0.191 0.138 0.072 0.042 0.030 0.025 0.023 0.022	$\begin{array}{c} 0.156\\ 0.151\\ 0.136\\ 0.096\\ 0.064\\ 0.044\\ 0.032\\ 0.024\\ 0.019\\ \end{array}$	0.564 0.359 0.169 0.046 0.013 0.004 0.001 0.002 0.008	0.220 0.191 0.139 0.072 0.042 0.029 0.024 0.021 0.017	$\begin{array}{c} 0.156 \\ 0.151 \\ 0.136 \\ 0.097 \\ 0.065 \\ 0.045 \\ 0.034 \\ 0.026 \\ 0.020 \end{array}$	0.568 0.362 0.172 0.048 0.015 0.006 0.003 0.006 0.016	0.221 0.192 0.133 0.072 0.042 0.030 0.0234 0.019 0.010
5.0	$\begin{array}{c} 0.10\\ 0.20\\ 0.40\\ 0.80\\ 1.20\\ 1.60\\ 2.00\\ 2.50\\ 3.00\\ 3.50\\ 4.00\\ 4.50\\ 5.00 \end{array}$	$\begin{array}{c} 0.156\\ 0.151\\ 0.136\\ 0.096\\ 0.063\\ 0.041\\ 0.028\\ 0.018\\ 0.013\\ 0.009\\ 0.007\\ 0.006\\ 0.005\\ \end{array}$	$\begin{array}{c} 0.563\\ 0.358\\ 0.168\\ 0.045\\ 0.014\\ 0.004\\ 0.001\\ 0.000\\ -0.001\\ -0.001\\ 0.000\\ 0.000\\ 0.000\\ 0.001 \end{array}$	0.219 0.189 0.135 0.066 0.034 0.020 0.014 0.010 0.009 0.009 0.009 0.009 0.009	$\begin{array}{c} 0.156\\ 0.151\\ 0.136\\ 0.096\\ 0.063\\ 0.041\\ 0.028\\ 0.018\\ 0.013\\ 0.010\\ 0.008\\ 0.006\\ 0.005\\ \end{array}$	0.568 0.362 0.172 0.048 0.015 0.005 0.002 0.000 0.000 0.000 0.000 0.000 0.001 0.002	0.219 0.189 0.135 0.066 0.034 0.020 0.013 0.010 0.009 0.009 0.009 0.009 0.008 0.007	0.156 0.151 0.136 0.096 0.063 0.042 0.028 0.019 0.013 0.010 0.008 0.007 0.006	$\begin{array}{c} 0.572 \\ 0.366 \\ 0.175 \\ 0.050 \\ 0.016 \\ 0.006 \\ 0.002 \\ 0.001 \\ 0.000 \\ 0.000 \\ 0.001 \\ 0.002 \\ 0.005 \end{array}$	$\begin{array}{c} 0.219\\ 0.189\\ 0.135\\ 0.066\\ 0.035\\ 0.021\\ 0.014\\ 0.011\\ 0.009\\ 0.009\\ 0.009\\ 0.008\\ 0.007\\ 0.004 \end{array}$

(d'après MILOVIC et TOURNIER)

4-4

<i>L∕</i> =	5	1	? = 0.1	15	-	$\mathcal{V} = 0$.30	1	' = 0	.45
H/B	²/	κ ^s _z	κ ^s _x	K ^s _{zx}	K ^s _z	K ^s	K ^s _{zx}	K²	K ^s	K ^s _{zx}
1.0	0.10 0.20 0.40 0.60 0.80 1.00	0.158 0.155 0.148 0.140 0.133 0.127	0.510 0.312 0.132 0.056 0.024 0.022	0.231 0.211 0.174 0.147 0.131 0.123	0.158 0.155 0.148 0.140 0.132 0.122	0.514 0.318 0.140 0.067 0.042 0.052	0.230 0.209 0.169 0.140 0.120 0.107	0.158 0.155 0.150 0.143 0.135 0.120	0.516 0.322 0.148 0.082 0.067 0.098	0.229 0.207 0.164 0.131 0.106 0.087
2.0	0.10 0.20 0.40 0.80 1.20 1.60 2.00	0.156 0.152 0.138 0.102 0.074 0.059 0.051	0.555 0.351 0.162 0.039 0.008 0.001 0.009	0.224 0.197 0.150 0.091 0.068 0.060 0.055	0.156 0.152 0.138 0.102 0.075 0.060 0.050	0.556 0.352 0.163 0.042 0.011 0.007 0.021	$\begin{array}{c} 0.224\\ 0.197\\ 0.149\\ 0.090\\ 0.064\\ 0.053\\ 0.043\\ \end{array}$	0.156 0.152 0.138 0.103 0.077 0.063 0.051	0.555 0.351 0.164 0.044 0.016 0.016 0.041	0.224 0.198 0.150 0.089 0.061 0.046 0.027
3.0	0.10 0.20 0.40 0.80 1.20 1.60 2.00 2.50 3.00	0.156 0.151 0.137 0.098 0.067 0.048 0.037 0.029 0.025	$\begin{array}{c} 0.567\\ 0.316\\ 0.170\\ 0.046\\ 0.013\\ 0.002\\ -0.001\\ 0.000\\ 0.004 \end{array}$	0.221 0.193 0.142 0.078 0.050 0.039 0.036 0.035 0.033	$\begin{array}{c} 0.156\\ 0.151\\ 0.137\\ 0.098\\ 0.068\\ 0.049\\ 0.038\\ 0.030\\ 0.025\\ \end{array}$	0.567 0.361 0.171 0.046 0.014 0.004 0.001 0.002 0.011	0.222 0.193 0.142 0.078 0.050 0.038 0.034 0.030 0.025	0.156 0.151 0.137 0.099 0.068 0.050 0.039 0.031 0.025	0.567 0.361 0.171 0.047 0.015 0.005 0.004 0.007 0.021	0.222 0.193 0.143 0.079 0.050 0.038 0.032 0.026 0.014
5.0	$\begin{array}{c} 0.10\\ 0.20\\ 0.40\\ 0.80\\ 1.20\\ 1.60\\ 2.00\\ 2.50\\ 3.00\\ 3.50\\ 4.00\\ 4.50\\ 5.00\\ \end{array}$	0.156 0.151 0.136 0.097 0.065 0.045 0.032 0.023 0.017 0.014 0.011 0.010 0.009	$\begin{array}{c} 0.572\\ 0.366\\ 0.175\\ 0.049\\ 0.016\\ 0.005\\ 0.001\\ 0.000\\ -0.001\\ -0.001\\ -0.009\\ 0.000\\ 0.002\\ \end{array}$	0.220 0.190 0.137 0.069 0.039 0.025 0.020 0.017 0.017 0.017 0.017 0.017	0.156 0.151 0.136 0.097 0.065 0.045 0.032 0.023 0.017 0.014 0.012 0.010 0.009	$\begin{array}{c} 0.573\\ 0.367\\ 0.175\\ 0.050\\ 0.016\\ 0.005\\ 0.002\\ 0.000\\ 0.$	0.220 0.191 0.137 0.070 0.039 0.026 0.020 0.017 0.016 0.016 0.016 0.015 0.013	0.156 0.151 0.136 0.097 0.066 0.045 0.033 0.023 0.018 0.014 0.012 0.011 0.009	0.573 0.367 0.175 0.050 0.016 0.002 0.000 0.000 0.000 0.000 0.000 0.002 0.004 0.007	0.221 0.191 0.138 0.070 0.040 0.027 0.021 0.018 0.017 0.016 0.015 0.013 0.008

(d'après MILOVIC et TOURNIER)

L/B=	: 1	l) = 0.º	15		$\mathcal{V} = 0$.30	l) = 0	.45
H/B	z/	κ²	K ⁰ _x	κ ⁰ _{zx}	K ⁰ _z	K ⁰ _x	K_{zx}^{0}	K ⁰ _z	κ°	K ⁰ _{zx}
1.0	0.00 0.10 0.20 0.40 0.60 0.80 1.00	1.000 0.974 0.941 0.837 0.682 0.563 0.473	0.441 0.310 0.214 0.040 -0.005 0.013 0.083		1.000 0.974 0.943 0.842 0.690 0.570 0.468	0.549 0.425 0.308 0.113 0.062 0.093 0.201		1.000 0.974 0.947 0.855 0.712 0.595 0.478	0.638 0.520 0.397 0.192 0.149 0.211 0.391	
2.0	0.00 0.10 0.20 0.40 0.80 1.20 1.60 2.00	1.000 0.970 0.931 0.802 0.462 0.282 0.200 0.157	0.527 0.385 0.261 0.061 0.027 0.023 0.005 0.027	0.726 0.521 0.236 0.062 0.033 0.030 0.028	$\begin{array}{c} 1.000\\ 0.970\\ 0.931\\ 0.802\\ 0.464\\ 0.286\\ 0.204\\ 0.155\end{array}$	0.649 0.500 0.355 0.122 0.003 -0.005 0.020 0.067		1.000 0.970 0.931 0.804 0.469 0.294 0.215 0.161	0.766 0.590 0.446 0.181 0.034 0.027 0.057 0.132	0.726 0.522 0.237 0.063 0.033 0.025 0.011
3.0	$\begin{array}{c} 0.00\\ 0.10\\ 0.20\\ 0.40\\ 0.80\\ 1.20\\ 1.60\\ 2.00\\ 2.50\\ 3.00 \end{array}$	1.000 0.970 0.930 0.799 0.452 0.263 0.170 0.122 0.091 0.073	$\begin{array}{c} 0.545\\ 0.400\\ 0.275\\ 0.070\\ -0.024\\ -0.025\\ -0.018\\ -0.011\\ -0.001\\ 0.13\\ \end{array}$	0.724 0.518 0.230 0.052 0.020 0.013 0.012 0.013 0.012	$\begin{array}{c} 1.000\\ 0.970\\ 0.930\\ 0.799\\ 0.453\\ 0.264\\ 0.172\\ 0.124\\ 0.093\\ 0.073\\ \end{array}$	0.672 0.502 0.370 0.131 0.003 -0.009 -0.006 0.000 0.011 0.031	0.724 0.519 0.230 0.052 0.020 0.013 0.012 0.011 0.009	$\begin{array}{c} 1.000\\ 0.970\\ 0.930\\ 0.799\\ 0.454\\ 0.266\\ 0.175\\ 0.129\\ 0.099\\ 0.0076\end{array}$	0.795 0.635 0.464 0.191 0.030 0.007 0.007 0.007 0.013 0.029 0.063	0.724 0.519 0.231 0.053 0.021 0.014 0.012 0.010 0.004
5.0	0.00 0.10 0.20 0.40 0.80 1.20 1.60 2.00 2.50 3.00 3.50 4.00 4.50 5.00	1.000 0.970 0.930 0.798 0.450 0.258 0.162 0.110 0.075 0.055 0.043 0.036 0.031 0.027	$\begin{array}{c} 0.555\\ 0.432\\ 0.282\\ 0.076\\ -0.020\\ -0.023\\ -0.017\\ -0.013\\ -0.008\\ -0.006\\ -0.004\\ -0.002\\ 0.001\\ 0.005 \end{array}$		1.000 0.970 0.930 0.798 0.450 0.258 0.162 0.111 0.075 0.056 0.044 0.037 0.032 0.027	$\begin{array}{c} 0.684\\ 0.521\\ 0.380\\ 0.138\\ 0.007\\ -0.009\\ -0.009\\ -0.007\\ -0.004\\ -0.002\\ 0.000\\ 0.003\\ 0.006\\ 0.012\\ \end{array}$		1.000 0.970 0.930 0.798 0.450 0.258 0.163 0.112 0.077 0.057 0.046 0.039 0.034 0.029	0.811 0.625 0.476 0.200 0.034 0.006 0.000 0.000 0.000 0.001 0.003 0.006 0.009 0.015 0.023	

(d'après MILOVIC et TOURNIER)

197

4-4

1/B=	2	l	v = 0.4	15		$\mathcal{V} = 0.30$) = 0	.45
Н/в	²/ _B	κ²	κ°	K_{zx}^{0}	K ⁰ _z	κ°	K ⁰ _{zx}	K ⁰ _z	κ°	κ ⁰ _{zx}
1.0	0.00 0.10 0.20 0.40 0.60 0.80 1.00	1.000 0.992 0.976 0.919 0.821 0.732 0.651	0.511 0.364 0.245 0.047 -0.006 0.020 0.115	0.775 0.589 0.337 0.233 0.198 0.181	1.000 0.992 0.977 0.924 0.827 0.734 0.638	0.571 0.445 0.314 0.122 0.080 0.130 0.273	0.775 0.589 0.334 0.226 0.181 0.145	1.000 0.992 0.981 0.936 0.847 0.754 0.639	0.607 0.501 0.377 0.207 0.193 0.291 0.523	0.777 0.593 0.337 0.224 0.165 0.099
2.0	0.00 0.10 0.20 0.40 0.80 1.20 1.60 2.00	1.000 0.985 0.963 0.877 0.615 0.436 0.334 0.271	0.656 0.502 0.325 0.084 -0.039 -0.036 -0.007 0.048		1.000 0.985 0.963 0.878 0.619 0.441 0.340 0.269	0.731 0.545 0.390 0.138 0.001 0.000 0.036 0.115	0.755 0.552 0.272 0.091 0.057 0.050 0.038	1.000 0.985 0.964 0.880 0.627 0.455 0.356 0.277	0.796 0.620 0.449 0.189 0.044 0.046 0.100 0.227	
3.0	0.00 0.10 0120 0.40 0.80 1.20 1.60 2.00 2.50 3.00	1.000 0.982 0.961 0.872 0.598 0.403 0.286 0.217 0.168 0.137	$\begin{array}{c} 0.691\\ 0.508\\ 0.350\\ 0.102\\ -0.032\\ -0.040\\ -0.030\\ -0.019\\ -0.002\\ 0.024 \end{array}$	0.751 0.546 0.261 0.073 0.033 0.024 0.023 0.024 0.024	1.000 0.982 0.962 0.872 0.599 0.405 0.289 0.220 0.171 0.137	0.772 0.580 0.418 0.156 0.002 -0.016 -0.001 0.000 0.020 0.059	0.752 0.546 0.261 0.073 0.033 0.024 0.022 0.022 0.022 0.017	1.000 0.982 0.962 0.873 0.602 0.409 0.295 0.229 0.180 0.142	0.848 0.675 0.482 0.207 0.036 0.010 0.012 0.025 0.055 0.116	0.752 0.547 0.263 0.074 0.035 0.025 0.023 0.020 0.008
5.0	0.00 0.10 0.20 0.40 0.80 1.20 1.60 2.00 2.50 3.00 3.50 4.00 4.50	1.000 0.981 0.961 0.594 0.393 0.270 0.195 0.138 0.104 0.083 0.070 0.060	$\begin{array}{c} 0.710\\ 0.525\\ 0.366\\ 0.114\\ -0.024\\ -0.036\\ -0.030\\ -0.023\\ -0.017\\ -0.001\\ -0.007\\ -0.003\\ 0.002\\ 0.002\\ 0.002\end{array}$	0.750 0.544 0.257 0.066 0.024 0.012 0.009 0.008 0.008 0.008 0.008 0.009 0.009	1.000 0.981 0.961 0.594 0.394 0.271 0.195 0.139 0.105 0.085 0.071 0.062	$\begin{array}{c} 0.795\\ 0.605\\ 0.436\\ 0.170\\ 0.009\\ -0.014\\ -0.015\\ -0.012\\ -0.008\\ -0.004\\ 0.000\\ 0.005\\ 0.012\\ 0.022\end{array}$	0.750 0.544 0.257 0.066 0.024 0.013 0.009 0.008 0.008 0.008 0.008 0.008	1.000 0.981 0.961 0.870 0.594 0.395 0.272 0.197 0.141 0.108 0.088 0.075 0.065	0.879 0.702 0.505 0.224 0.043 0.007 0.000 0.000 0.000 0.002 0.006 0.011 0.018 0.029	0.750 0.544 0.258 0.066 0.025 0.013 0.010 0.008 0.008 0.008 0.008 0.008

(d'après MILOVIC et TOURNIER)

.

ŝ

L/B=	= 5		$\mathcal{V}=0.$	15		$\mathcal{V} = 0$).30	1	" = C	.45
H/B	z/ / B	κ°	κ ⁰ _x	κ [°] _{zx}	κ [°]	κ ⁰	K ⁰ _{zx}	K ⁰ _z	κ°	K ⁰ _{zx}
1.0	0.00 0.10 0.20 0.40 0.60 0.80 1.00	1.000 0.996 0.980 0.920 0.830 0.753 0.688	0.525 0.365 0.252 0.050 -0.005 0.022 0.121	 0.796 0.610 0.367 0.271 0.239 0.221	1.000 0.996 0.981 0.922 0.832 0.751 0.672	0.566 0.425 0.303 0.117 0.081 0.138 0.288		1.000 0.996 0.983 0.930 0.843 0.760 0.665	0.592 0.462 0.358 0.200 0.199 0.307 0.544	0.797 0.609 0.358 0.246 0.183 0.108
2.0	0.00 0.10 0.20 0.40 0.80 1.20 1.60 2.00	1.000 0.990 0.971 0.889 0.667 0.524 0.441 0.385	$\begin{array}{c} 0.715\\ 0.505\\ 0.362\\ 0.104\\ -0.040\\ -0.043\\ -0.008\\ 0.068\end{array}$	0.772 0.565 0.290 0.119 0.092 0.092 0.088	1.000 0.990 0.971 0.890 0.670 0.528 0.443 0.377	$\begin{array}{c} 0.745\\ 0.565\\ 0.390\\ 0.135\\ -0.004\\ 0.002\\ 0.054\\ 0.162\\ \end{array}$	0.772 0.566 0.290 0.118 0.088 0.082 0.064	1.000 0.990 0.972 0.893 0.677 0.539 0.455 0.379	0.760 0.590 0.410 0.163 0.039 0.063 0.144 0.310	0.773 0.568 0.293 0.120 0.088 0.072 0.032
3.0	0.00 0.10 0.20 0.40 0.80 1.20 1.60 2.00 2.50 3.00	1.000 0.990 0.969 0.884 0.649 0.391 0.329 0.278 0.241	$\begin{array}{c} 0.778\\ 0.541\\ 0.408\\ 0.137\\ -0.027\\ -0.049\\ -0.043\\ -0.029\\ -0.002\\ 0.042\\ \end{array}$		1.000 0.990 0.969 0.884 0.650 0.492 0.395 0.333 0.281 0.238	0.812 0.610 0.436 0.165 0.000 -0.022 -0.015 0.003 0.038 0.102	0.767 0.556 0.273 0.089 0.052 0.044 0.044 0.043 0.034	1.000 0.990 0.970 0.885 0.653 0.498 0.404 0.344 0.292 0.242	0.836 0.649 0.458 0.188 0.026 0.008 0.020 0.046 0.099 0.198	0.768 0.557 0.274 0.091 0.054 0.046 0.043 0.038 0.016
5.0	$\begin{array}{c} 0.00\\ 0.10\\ 0.20\\ 0.40\\ 0.80\\ 1.20\\ 1.60\\ 2.00\\ 2.50\\ 3.00\\ 3.50\\ 4.00\\ 4.50\\ 5.00\\ \end{array}$	1.000 0.990 0.969 0.881 0.641 0.474 0.367 0.294 0.233 0.191 0.162 0.141 0.126 0.113	$\begin{array}{c} 0.819\\ 0.603\\ 0.442\\ 0.164\\ -0.010\\ -0.040\\ -0.041\\ -0.037\\ -0.029\\ -0.022\\ -0.014\\ -0.006\\ 0.005\\ 0.020\\ \end{array}$	0.765 0.511 0.264 0.075 0.033 0.021 0.018 0.017 0.018 0.019 0.021 0.022 0.021	1.000 0.990 0.969 0.881 0.641 0.475 0.368 0.296 0.235 0.193 0.165 0.144 0.128 0.113	$\begin{array}{c} 0.859\\ 0.642\\ 0.473\\ 0.194\\ 0.015\\ -0.018\\ -0.023\\ -0.020\\ -0.014\\ -0.007\\ 0.002\\ 0.012\\ 0.027\\ 0.048 \end{array}$	0.765 0.551 0.264 0.075 0.033 0.021 0.018 0.017 0.018 0.019 0.019 0.019 0.015	$\begin{array}{c} 1.000\\ 0.990\\ 0.969\\ 0.882\\ 0.642\\ 0.476\\ 0.370\\ 0.299\\ 0.239\\ 0.199\\ 0.172\\ 0.152\\ 0.135\\ 0.117\\ \end{array}$	$\begin{array}{c} 0.895\\ 0.703\\ 0.503\\ 0.221\\ 0.039\\ 0.003\\ -0.003\\ -0.001\\ 0.005\\ 0.013\\ 0.024\\ 0.040\\ 0.062\\ 0.096 \end{array}$	0.765 0.552 0.265 0.076 0.034 0.023 0.019 0.018 0.019 0.018 0.019 0.018 0.016 0.008

(d'après MILOVIC et TOURNIER)

199

BIBLIOGRAPHIE

Les résultats indiqués dans cette section ont été obtenus par Milovic et Tournier [1] qui nous ont autorisés à les reproduire, ce dont nous les remercions vivement.

REFERENCES

 [1] D.M. MILOVIC and J.P. TOURNIER, "Stresses and Displacements due to Rectangular Load on a Layer of Finite Thickness", <u>Soils and Foundations</u>, 11, 1 (March, 1971), 1-27.

SECTION 4-5

FONDATION RECTANGULAIRE RIGIDE EXERÇANT UNE CHARGE VERTICALE

(Semelle, Radier) sur un sol homogène d'épaisseur infinie

SOMMAIRE

- Définition du sol
- Définition de la charge
- Calcul du tassement
- Calcul de la rotation
- Calcul des contraintes
- Tables et Graphiques
- Bibliographie

Chapitre 4

DEFINITION DU SOL

Le sol est supposé homogène sur une <u>épaisseur infinie</u> ("milieu semi-infini") Si le sol n'est pas homogène, les valeurs données ici pour les contraintes (en particulier pour σ_z) peuvent cependant être considérées comme une bonne approximation des contraintes réelles, sauf peut-être dans le cas d'une *couche de sol très dur reposant sur des terrains plus mous*. Au contraire, pour que les valeurs du tassement et de la rotation données ici soient correctes, il faut que les hypothèses (homogénéité et épaisseur infinie) soient respectées, du moins avec une bonne approximation. Par exemple, si le sol est composé d'une couche d'épaisseur H reposant sur un substratum peu déformable, il faut, pour que <u>l'erreur sur le tassement et la rotation</u> soit inférieure à 20 %, que la condition suivante soit respectée :

(1) H > L + 2 B,

avec :

L, B : longueur et largeur de la fondation rectangulaire.

DEFINITION DE LA CHARGE

La fondation rectangulaire est <u>rigide et lisse</u>. Elle a pour longueur L et pour largeur B. On désigne par 2a le côté parallèle à Ox et 2b le côté parallèle à Oy (Fig. 1) Par exemple, si l'axe Ox est parallèle au grand côté, on a 2a = L.

FIG. 1. - Définition de la charge.

Section 4-5

La fondation exerce sur le sol une <u>force normale excentrée</u> dont le point d'application se trouve à la distance E_x de l'axe Oy et à la distance E_y de l'axe Ox. <u>L'excentricité</u> est définie par :

(2)
$$e_x = \frac{E_x}{2a}$$
 et $e_y = \frac{E_y}{2b}$

Le <u>moment</u> de la force N, compté positivement dans le sens trigonométrique, est :

- par rapport à Oy :

(3) $\mathcal{M}_{y} = - E_{x} N;$ - par rapport à Ox :

$$(4) \qquad \mathcal{M}_{x} = \mathbb{E}_{y} \mathbb{N}.$$

La fondation étant lisse, les contraintes à son contact avec le sol sont normales. Elles sont infinies sur les bords et leur répartition ne s'exprime pas analytiquement. Le fait que la fondation soit supposée lisse n'affecte que très peu le tassement et la rotation.

CALCUL DU TASSEMENT

La formule suivante donne w_{r0} qui est soit le tassement de tous les points de la fondation si la charge est centrée ($e_x = e_y = 0$), soit celui du centre 0 lorsque la charge est excentrée :

(5)
$$w_{rO} = \frac{1 - v^2}{E} \frac{N}{L}\overline{P}$$

avec :

- E, v : module d'Young et coefficient de Poisson su sol ;
 - N : force normale exercée par la fondation sur le sol ;

L, B : longueur et largeur de la fondation ;

 \overline{P} : coefficient sans dimensions dont les valeurs sont données dans une table et un graphique en fonction de L/B.

Exemple 1 :

Considérons une cuve déposée sur le sol et dont la base rectangulaire rigide a pour longueur 4,5 m (15 ft) et pour largeur 3 m (10 ft). La charge totale (poids du béton et du liquide contenu) est de 30 tonnes (66 000 lb). Le sol dont l'épaisseur homogène est grande a pour module d'Young 25 bars (52 000 lb/ sq. ft) et pour coefficient de Poisson 0,3. Quel est le tassement de la cuve ?

En premier lieu, on voit dans le tableau que pour L/B = 1,5, on a : \overline{P} = 1,07.

On peut utiliser la formule (5) en exprimant la force et le module en unités du système international :

 $N = 30 \text{ tonnes} = 30 \times 9 810 \text{ newtons},$ $E = 25 \text{ bars} = 25 \times 10^5 \text{ pascals}.$ Le tassement se calcule alors par : $w_{ro} = \frac{1 - (0,3)^2}{25 \times 10^5} \times \frac{30 \times 9 810}{4,5} \times 1,07 = 0,025 \text{ m} = 2,5 \text{ cm};$ ou bien, en unités britanniques : $w_{ro} = \frac{1 - (0,3)^2}{52\,000} \times \frac{66\,000}{15} \times 1,07 = 0,082 \text{ ft} = 1 \text{ inch}.$

CALCUL DE LA ROTATION

Sous l'effet de la <u>force excentrée</u> N (Fig. 1), la fondation rectangulaire rigide fait avec l'horizontale un angle que l'on peut décomposer en une rotation autour de Ox et une rotation autour de Oy :

• Rotation autour de Ox :

(6)
$$\phi_{\mathbf{x}} \simeq \operatorname{tg} \phi_{\mathbf{x}} = \frac{1 - v^2}{\mathbb{E}} \frac{\mathcal{M}_{\mathbf{x}}}{2 a(2 b)^2} \overline{Q}_{\phi}$$

• Rotation autour de Oy :

(7)
$$\phi_{y} \approx tg \phi_{y} = \frac{1 - v^{2}}{E} \frac{\mathcal{M}_{y}}{(2 a)^{2} 2 b} \overline{Q}_{\phi}$$

avec :

 $\phi_x, \ \phi_y$: angles positifs dans le sens trigonométrique ; E, v : module d'Young et coefficient de Poisson du sol ;

Section 4-5

M_x, M_y: moments définis par (3) et (4);
 2 a, 2 b: côtés parallèles respectivement à 0x et 0y;
 Q_φ: coefficient sans dimensions dont les valeurs sont données dans une
 table et un graphique en fonction de α;
 α: coefficient valant a/b dans la formule (6) et b/a dans la formule
 (7).

Le tassement d'un point quelconque de la fondation s'écrit alors :

(8)
$$w_r = w_{r0} - x tg \phi_y + y tg \phi_x$$
,

(9)
$$w_r = \frac{1 - v^2}{E} \frac{N}{LB} \left[\overline{BP} + x e_x \overline{Q}_{\phi(\alpha=b/a)} + y e_y \overline{Q}_{\phi(\alpha=a/b)} \right]$$

Exemple 2 :

Reprenons l'exemple précédent en supposant que la force N est excentrée de $E_y = 0,5 \text{ m} (5/3 \text{ ft})$ sur un axe 0_y parallèle au petit côté de la fondation rectangulaire. Quel est le tassement des points de l'axe 0x et quelle est la rotation de la fondation ?

L'excentrement suivant l'axe Ox étant nul($E_x = 0$), la formule (5) donne le tassement de tous les points de l'axe Ox qui est égal à celui du centre de la fondation et dont la valeur a été calculée dans l'exemple précédent.

Pour calculer la rotation, notons d'abord que Oy étant parallèle au petit côté, nous avons :

2 b = B = 3 m (10 ft) 2 a = L = 4,5 m (15 ft) d'où a/b = α = 1,5. Le coefficient de rotation donné dans le tableau pour α = 1,5 vaut :

 $\overline{Q}_{d} = 4,44.$

205

L'angle de rotation est alors donné par la formule (6) où le moment est donné par la formule (4) :

$$\phi_{\rm x} = \frac{1 - (0,3)^2}{25 \times 10^5} \times \frac{30 \times 9 \ 810 \times 0.5}{4.5 \times (3)^2} \times 4.44 = 0.006 = 0.33^\circ = 20 \text{ minutes}$$

ou bien, en unités britanniques :

~

$$\phi_{\rm x} = \frac{1 - (0,3)^2}{52\ 000} \times \frac{66\ 000 \times 5/3}{15 \times (10)^2} \times 4,44 = 0,006.$$

CALCUL DES CONTRAINTES

Des tables pour le calcul des contraintes provoquées dans le sol par une fondation rectangulaire rigide sont en cours d'élaboration. En attendant, on pourra se reporter aux tables concernant les fondations rectangulaires linéairement chargées (1).

 (1) Voir les sections "<u>Fondation rectangulaire exerçant une charge linéairement répar-</u> tie" et "<u>Fondation rectangulaire exerçant une charge normale linéairement répartie</u>". (Sections 4-1 et 4-2.)
TABLES ET GRAPHIQUES

— <u>Calcul</u> du tassement		
Coefficient : \overline{P}	p.	208-209
— <u>Calcul de la rotation</u>		
Coefficient : \overline{Q}_{ϕ}	p.	208-209

207

208

L_B	P	L_B	P	L_B	P
1	0.88	1.9	1.19	5	1.72
1.1	0.92	2	1.21	6	1.83
1.2	0.96	2.2	1.26	7	1.92
1.3	1.00	2.4	1.31	8	2.00
1.4	1.03	2.5	1.33	9	2.07
1.5	1.07	3	1.43	10	2.13
1.6	1.10	3.5	1.52	15	2.37
1.7	1.13	4	1.59	20	2.54
1.8	1.16	4.5	1.66	x	∞

ح	\overline{Q}_{φ}	ل	\overline{Q}_{φ}	ح	Q _φ
0	0	0.45	3.32	0.9	4.03
0.05	1.04	0.5	3.43	1	4.13
0.1	1.61	0.55	3.54	1.5	4.44
0.15	2.02	0.6	3.64	2	4.60
0.2	2.36	0.65	3.72	3	4.78
0.25	2.61	0.7	3.80	4	4.87
0.3	2.84	0.75	3.86	5	4.94
0.35	3.02	0.8	3.94	10	5.05
0.4	3.18	0.85	3.98	œ	5.10

BIBLIOGRAPHIE

Les résultats donnés ici sont le fruit de calculs que nous avons fait à partir de premiers résultats obtenus par Gorbounov-Posadov [3] et repris par Touzot [4]. La valeur de la rotation d'une fondation rectangulaire de longueur infinie a été donnée par Frohlich [2]. Ce problème a été également traité par Absi [1]; toutefois ses résultats différent légèrement des nôtres en ce qui concerne le coefficient \overline{Q}_{ϕ} .

REFERENCES

- [1] E. ABSI, "Etude de problèmes particuliers", <u>Annales de l'I.T.B.T.P.</u>, <u>265</u>, TMC (Janv. 1970), 174-187.
- [2] O.K. FROHLICH, "Uber eine einfache An wendung der Potentialtheorie auf die Berechnung der Schiefstellung von Bauwerken", <u>Anzeiger Math. Natur. Klasse der</u> <u>Osterr. A kad. Wissenschaften</u>, 7 (Wien, Janv. 1952).
- [3] M.I. GORBOUNOV-POSADOV, "<u>Obliczanie Konstrukcji na Podlozu Sprezystym</u>", Wydawnictwo Budownictwo i Architektura (Varsovie, 1956), p. 434.
- [4] G. TOUZOT, "<u>Etude de plaques rigides et flexibles reposant sur massifs élasti-</u> <u>ques</u>", Thèse de Doctorat de Spécialité, Université de Grenoble (1967).

SECTION 4-6

REMBLAI A BASE RECTANGULAIRE

sur un sol homogène d'épaisseur infinie

SOMMAIRE

- Définition du sol
- Définition de la charge
- Calcul direct du tassement
- Calcul des contraintes
- Tables et Graphiques
- Expression des coefficients
- Bibliographie

Chapitre 4

DEFINITION DU SOL

Le sol est supposé homogène sur une <u>épaisseur infinie</u> ("milieu semi-infini"). Si le sol n'est pas homogène, les valeurs données ici pour σ_z peuvent cependant être considérées comme une bonne approximation des contraintes réelles sauf peutêtre dans le cas d'une couche de sol très dur reposant sur des terrains bien plus mous. Au contraire, pour que les valeurs du tassement données ici soient correctes, il faut que les hypothèses (homogénéité et épaisseur infinie) soient respectées, du moins avec une bonne approximation. Par exemple, si le sol est composé d'une couche homogène d'épaisseur H reposant sur un substratum peu déformable, il faut pour que <u>l'erreur sur le tassement</u> soit inférieure à 20 % que la condition suivante soit respectée :

(1) $H \ge L + 2 B$,

avec :

L, B : longueur et largeur de la base du remblai.

DEFINITION DE LA CHARGE

La charge exercée sur le sol se déduit de la forme du remblai par une affinité de rapport y (*poids volumique du matériau en remblai*). La géométrie du remblai est définie sur la figure 1a et la charge qu'il exerce sur le sol sur la figure 1b. La charge augmente linéairement depuis zéro sur le bord du rectangle de base jusqu'à la valeur p, répartie uniformément sur le rectangle central. La contrainte p s'exprime par :

(2)
$$p = \gamma h = \rho g h$$

avec :

- p : contrainte normale sur le rectangle central ;
- γ, ρ : poids et masse volumiques du matériau en remblai ;
 - h : hauteur du remblai ;
 - g : accélération de la pesanteur.

Section 4-6

213

Exemple 1 :

La hauteur du remblai est 12 m (40 ft) et son poids volumique est 1,78 t/m^3 (110 lb/cu. ft). Quelle est la valeur de p?

Système international : $p = 1 780 \times 9,81 \times 12 = 2,1 \times 10^5$ pascals = 2,1 bars Système français : $p = 1,78 \times 12 = 21,4 \text{ t/m}^2 = 2,14 \text{ kg/cm}^2$ Système britannique : $p = 110 \times 40 = 4400 \text{ lb/sq. ft} = 30,5 \text{ p.s.i.}$

CALCUL DIRECT DU TASSEMENT

Le tassement a été claculé en <u>7 points différents</u> de la surface du sol en contact avec le remblai définis sur les figures 2 et 3. Il s'exprime à l'aide de la formule suivante :

(3)
$$w = \frac{1 - v^2}{E} pBK$$

FIG. 2. - Position des points où est donné le tassement.

FIG. 3. — Cas particulier : c = 0.

avec :

- E, v : module d'Young et coefficient de Poisson du sol ;
 - p : contrainte normale définie par la formule (2) ;
- L, B : longueur et largeur du rectangle de base ;
 - c : largeur de la pente du remblai ;
 - K : coefficient sans dimensions, relatif au point considéré et donné dans les tables et graphiques en fonction de L/B et c/B.

Exemple 2 :

Considérons un remblai de longueur 144 m (480 ft), de largeur 96 de hauteur 12 m (40 ft) et de pente latérale 26,5°. Le poids volumique du matériau en remblai est 1,78 t/m³ (110 lb/cu. ft) et les propriétés du sol sont E = 500 bars (1,05 × 10⁶ lb/sq. ft) et v = 0,3. Quels tassements peut-on prédire ?

En premier lieu calculons l'épaisseur minimale que doit avoir la couche de sol à peu près homogène pour que le calcul direct du tassement soit valable. Pour cela, appliquons la formule (1) :

```
H ≥ 144 + 2 × 96 = 336 m
≥ 480 + 2 × 320 = 1 120 ft.
Calculons ensuite c :
c = h/tg 26,5° = 2 h = 24 m (80 ft).
Donc :
c/B = 0,25 et L/B = 1,5.
D'autre part :
p = 2,1 bars (4 400 lb/sq. ft) d'après l'exemple 1.
```

Le tassement est alors donné par la formule (3) :

$$w = \frac{1 - (0,3)^2}{600} \times 2,1 \times 96 \times K = 0,367 \text{ K (metres)} = 36,7 \text{ K (centimetres)}$$
$$= \frac{1 - (0,3)^2}{1,05 \times 10^6} \times 4400 \times 320 \times K = 1,22 \text{ K (feet)} = 14,6 \text{ K (inches)}.$$

D'après les tables de K, on obtient alors, par valeurs décroissantes :

CALCUL DES CONTRAINTES

Les tables ne donnent que la contrainte σ_z et <u>uniquement dans le cas d'un</u> remblai à base carrée (L = B).

- Sous le centre du remblai :

(4)
$$\sigma_{z} = \frac{p}{2c} \left[B \pi_{o(z/B)} - (B - 2c) \pi_{o(z/(B - 2c))} \right]$$

et, si 2 c = B (remblai pyramidal) :

(5)
$$\sigma_z = p \pi_{o(z/B)}$$
.

- Sous le coin du remblai et uniquement si 2 c = B :

(6)
$$\sigma_{z} = p \pi_{c(z/B)},$$

4-6

216

Section 4-6

avec :

p : contrainte normale définie par la formule (2) ;

B : côté de la base carrée du remblai ;

c : largeur de la pente (Fig. 1) ;

- z : profondeur à laquelle est calculée la contrainte σ_z ;
- π_{o} et π_{c} : coefficients sans dimensions dont les valeurs numériques sont données dans une table en fonction de ζ ;
 - ζ : paramètre sans dimensions valant z/B ou z/(B 2 c) comme cela est indiqué entre parenthèses dans les formules.

Exemple 3 :

Considérons un remblai dont la base carrée a pour côté 48 m (160 ft) et de 6 m (20 ft) de hauteur. La pente latérale est de 26,5° et le poids volumique du matériau en remblai est 1,78 t/m³ (110 lb/cu. ft). Quelle est la contrainte σ_z à 24 m (80 ft) de profondeur sous le centre de ce remblai ?

D'après l'exemple 1, la contrainte p vaut : p = 1,05 bar (2 200 lb/sq. ft). Calculons c : c = h/(tg 26,5°) = 2 h = 12 m (40 ft). Appliquons alors la formule (4) : $\sigma_z = \frac{1,05}{24} [48 \times 0,590 - 24 \times 0,333] = 0,89$ bar $= \frac{2,200}{80} [160 \times 0,590 - 80 \times 0,333] = 1,860$ lb/sq. ft.

Les valeurs 0,590 et 0,333 du coefficient π_0 étant lues dans la table pour ζ = 0,5 et ζ = 1.

TABLES ET GRAPHIQUES

 Calcul du tassement			
Coefficients : K_0 , K_A , K_B , K_C , $K_{A'}$, $K_{B'}$, $K_{C'}$	p.	218 à	231
 Calcul des contraintes			
Coefficients : $\Pi_{\rm c}$, $\Pi_{\rm o}$	р.	232	

					¢	́В					1
∕в	0	0,05	0,1	0,15	0,2	0,25	0,3	0,35	0,4	0,45	0,5
1	1.122	1.066	1.010	0.954	0.898	0.842	0.786	0.729	0.673	0.617	0.561
1,1	1.176	1.120	1.064	1.007	0.951	0.895	0.838	0.782	0.725	0.668	0.610
1,2	1.226	1.170	1.113	1.057	1.000	0.943	0.886	0.829	0.771	0.712	0.651
1,3	1.273	1.216	1.159	1.102	1.044	0.987	0.929	0.870	0.811	0.751	0.687
1,4	1.317	1.259	1.201	1.144	1.086	1.027	0.968	0.909	0.848	0.785	0.719
1,5	1.358	1.300	1.241	1.183	1.124	1.064	1.004	0.943	0.881	0.817	0.748
1,6	1.396	1.338	1.279	1.219	1.159	1.099	1.038	0.976	0.912	0.845	0.774
1,7	1.433	1.373	1.314	1.254	1.193	1.131	1.069	1.005	0.940	0.872	0.798
1,8	1.467	1.407	1.347	1.286	1.224	1.162	1.098	1.033	0.966	0.896	0.821
1,9	1.500	1.440	1.378	1.316	1.254	1.190	1.126	1.059	0.991	0.919	0.842
2	1.532	1.470	1.408	1.345	1.282	1.217	1.151	1.084	1.014	0.941	0.861
2,2	1.590	1.527	1.464	1.399	1.334	1.267	1.199	1.129	1.057	0.980	0.897
2,4	1.644	1.580	1.514	1.448	1.381	1.312	1.242	1.170	1.095	1.016	0.930
2,5	1.669	1.604	1.538	1.471	1.403	1.333	1.262	1.189	1.113	1.032	0.945
3	1.783	1.714	1.644	1.573	1.501	1.427	1.351	1.273	1.191	1.105	1.011
4	1.964	1.889	1.812	1.734	1.654	1.573	1.489	1.402	1.311	1.216	1.112
5	2.105	2.024	1.942	1.858	1.772	1.684	1.594	1.500	1.403	1.300	1.189
6	2.220	2.135	2.048	1.959	1.868	1.775	1.679	1.580	1.476	1.368	1.250
7	2.318	2.228	2.137	2.044	1.949	1.851	1.750	1.646	1.538	1.424	1.302
8	2.403	2.309	2.214	2.117	2.018	1.917	1.812	1.704	1.591	1.473	1.347
9	2.477	2.381	2.283	2.182	2.080	1.974	1.866	1.754	1.638	1.516	1.386
10	2.544	2.445	2.343	2.240	2.134	2.026	1.914	1.799	1.680	1.554	1.420
15	2.802	2.691	2.577	2.462	2.344	2.223	2.099	1.971	1.839	1.700	1.553
20	2.985	2.865	2.743	2.619	2.492	2.362	2.229	2.092	1.950	1.803	1.646
30	3.243	3.111	2.976	2.839	2.700	2.557	2.411	2.262	2.107	1.947	1.777
40	3.426	3.285	3.142	2.996	2.847	2.695	2.541	2.382	2.218	2.049	1.870
50	3.568	3.420	3.270	3.117	2.961	2.803	2.641	2.475	2.304	2.127	1.941
100	4.010	3.840	3.668	3.493	3.315	3.135	2.951	2.763	2.570	2.371	2.163
∞	∞	∞	∞	∞	∞	∞	00	©	∞	∞	∞

50

Chapitre 4

218

			1		¢	́В					
∕в	0	0,05	0,1	0,15	0,2	0,25	0,3	0,35	0,4	0,45	0,5
1	0.766	0.665	0.588	0.521	0.462	0.410	0.364	0.324	0.288	0.258	0.232
1,1	0.795	0.693	0.615	0.548	0.488	0.435	0.388	0.346	0.309	0.278	0.250
1,2	0.822	0.719	0.641	0.572	0.512	0.458	0.409	0.367	0.329	0.295	0.266
1,3	0.847	0.743	0.664	0.595	0.533	0.478	0.429	0.385	0.346	0.311	0.281
1,4	0.870	0.766	0.686	0.616	0.553	0.498	0.447	0.402	0.362	0.326	0.295
1,5	0.892	0.787	0.706	0.635	0.572	0.515	0.464	0.418	0.377	0.340	0.307
1,6	0.912	0.806	0.725	0.653	0.589	0.532	0.480	0.433	0.390	0.352	0.318
1,7	0.931	0.825	0.742	0.670	0.605	0.547	0.494	0.446	0.403	0.364	0.329
1,8	0.949	0.842	0.759	0.686	0.621	0.561	0.508	0.459	0.415	0.375	0.339
1,9	0.966	0.858	0.775	0.701	0.635	0.575	0.521	0.471	0.426	0.385	0.349
2	0.982	0.874	0.790	0.715	0.649	0.588	0.533	0.483	0.437	0.395	0.358
2,2	1.012	0.903	0.817	0.742	0.674	0.612	0.555	0.504	0.456	0.413	0.374
2,4	1.039	0.929	0.843	0.766	0.697	0.634	0.576	0.523	0.474	0.430	0.389
2,5	1.052	0.942	0.854	0.777	0.708	0.644	0.585	0.532	0.482	0.437	0.396
3	1.110	0.997	0.907	0.828	0.755	0.689	0.628	0.571	0.519	0.471	0.427
4	1.201	1.084	0.991	0.907	0.831	0.760	0.694	0.633	0.577	0.524	0.475
5	1.272	1.152	1.055	0.968	0.888	0.814	0.746	0.681	0.621	0.565	0.512
6	1.330	1.207	1.108	1.018	0.936	0.859	0.787	0.720	0.657	0.598	0.542
7	1.379	1.254	1.152	1.060	0.975	0.896	0.822	0.752	0.687	0.625	0.567
8	1.422	1.294	1.191	1.097	1.010	0.929	0.852	0.781	0.713	0.649	0.589
9	1.459	1.330	1.225	1.129	1.040	0.957	0.879	0.805	0.736	0.670	0.608
10	1.493	1.362	1.255	1.158	1.067	0.983	0.903	0.828	0.756	0.689	0.625
15	1.622	1.485	1.372	1.268	1.171	1.080	0.994	0.912	0.835	0.761	0.690
20	1.713	1.572	1.454	1.346	1.245	1.149	1.059	0.972	0.890	0.812	0.736
30	1.842	1.695	1.571	1.456	1.349	1.247	1.150	1.057	0.968	0.883	0.801
40	1.934	1.781	1.653	1.534	1.422	1.315	1.214	1.117	1.023	0.934	0.847
50	2.005	1.849	1.717	1.595	1.479	1.369	1.264	1.163	1.066	0.973	0.883
100	2.225	2.060	1.916	1.783	1.656	1.535	1.418	1.307	1.199	1.095	0.994
∞	∞	∞	∞	∞	∞	∞	∞	∞	∞	∞	∞

A

Chapitre 4

220

1

111-1

L/					ç	′B					
∕в	0	0,05	0,1	0,15	0,2	0,25	0,3	0,35	0,4	0,45	0,5
	0.766	0.665	0.599	0.501	0.460	0.410	0.004	0.004	0.000	0.050	0.000
1,1	0.768	0.005	0.588	0.521	0.462	0.410	0.364	0.324	0.288	0.258	0.232
1,2	0.852	0.749	0.670	0.601	0.540	0.484	0.434	0.390	0.350	0.315	0.284
1,3	0.892	0.788	0.708	0.638	0.575	0.518	0.467	0.420	0.378	0.341	0.308
1,4	0.930	0.825	0.744	0.672	0.608	0.550	0.497	0.449	0.405	0.366	0.331
1,5	0.966	0.860	0.778	0.705	0.640	0.580	0.526	0.476	0.431	0.389	0.352
1,6	1.000	0.893	0.810	0.737	0.670	0.609	0.553	0.502	0.455	0.412	0.373
1,7	1.033	0.925	0.841	0.766	0.699	0.637	0.579	0.527	0.478	0.433	0.392
1,8	1.064	0.955	0.870	0.795	0.726	0.663	0.604	0.550	0.500	0.453	0.410
1,9	1.094	0.984	0.898	0.822	0.752	0.688	0.628	0.572	0.521	0.473	0.428
2	1.122	1.012	0.925	0.848	0.777	0.711	0.651	0.594	0.541	0.491	0.445
2,2	1.176	1.064	0.976	0.897	0.824	0.756	0.693	0.634	0.578	0.526	0.476
2,4	1.226	1.113	1.023	0.942	0.867	0.797	0.732	0.670	0.612	0.557	0.505
2,5	1.250	1.136	1.045	0.963	0.887	0.817	0.750	0.688	0.628	0.572	0.519
3	1.358	1.240	1.145	1.059	0.979	0.904	0.833	0.766	0.701	0.639	0.580
4	1.532	1.408	1.306	1.213	1.126	1.044	0.965	0.889	0.816	0.745	0.676
5	1.669	1.540	1.433	1.334	1.241	1.153	1.067	0.985	0.905	0.827	0.751
6	1.783	1.649	1.537	1.433	1.335	1.241	1.151	1.063	0.977	0.893	0.812
7	1.880	1.741	1.625	1.517	1.415	1.317	1.221	1.129	1.038	0.950	0.863
8	1.964	1.822	1.702	1.590	1.484	1.382	1.282	1.185	1.091	0.998	0.907
9	2.038	1.893	1.770	1.654	1.545	1.439	1.336	1.236	1.137	1.041	0.945
10	2.105	1.956	1.830	1.712	1.599	1.490	1.384	1.280	1.178	1.078	0.980
15	2.362	2.202	2.063	1.933	1.808	1.686	1.568	1.451	1.337	1.224	1.112
20	2.544	2.376	2.229	2.090	1.956	1.825	1.698	1.572	1.449	1.326	1.205
30	2.802	2.621	2.462	2.310	2.163	2.020	1.880	1.742	1.605	1.470	1.336
40	2.985	2.795	2.627	2.466	2.311	2.159	2.009	1.862	1.716	1.572	1.428
50	3.127	2.930	2.755	2.587	2.425	2.266	2.109	1.955	1.802	1.650	1.500
100	3.568	3.351	3.153	2.964	2.779	2.598	2.419	2.243	2.068	1.894	1.722
8	œ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8	8	8	8	8	œ	00	00	œ
			1	t		t					

.

B

Chapitre 4

-

222

Section 4-6

GIROUD. - Tables pour le calcul des fondations. Tome 2

8

223

	ç	′B					
0,15	0,2	0,25	0,3	0,35	0,4	0,45	0,5
0.074	0.000					1	1
0.371	0.328	0.291	0.258	0.229	0.204	0.182	0.164
0.395	0.351	0.313	0.279	0.249	0.223	0.200	0.180
0.410	0.373	0.334	0.298	0.267	0.240	0.216	0.195
0.439	0.393	0.353	0.317	0 284	0.256	0.230	0.208
0.458	0.412	0.370	0.333	0.300	0.270	0.244	0.220
0.476	0.429	0.387	0.349	0.315	0.284	0.256	0.232
	10000100000			Concession in the			
0.494	0.446	0.403	0.364	0.329	0.297	0.268	0.243
0.510	0.461	0.417	0.378	0.342	0.309	0.280	0.253
0.525	0.476	0.431	0.391	0.354	0.320	0.290	0.262
0.540	0.490	0.444	0.403	0.366	0.331	0.300	0.271
0.554	0.503	0.457	0.415	0.377	0.342	0.309	0.280
0.579	0.527	0.480	0.437	0.397	0.361	0.327	0.296
0.603	0.550	0.501	0.457	0.416	0.378	0.343	0.311
0.614	0.560	0.511	0.466	0.424	0.386	0.350	0.317
0.664	0.607	0.556	0.508	0.464	0.422	0.384	0.348
0.742	0.682	0.626	0.574	0.525	0.479	0.436	0.395
0.803	0.739	0.680	0.624	0.572	0.523	0.476	0.432

B

1

1,1

1,2

1,3

1,4

1,5

1,6

1,7

1,8

1,9

2

2,2

2,4

2,5

3

4

5

6

7

8

9

10

15

20

30

40

50

100

 ∞

0

0.561

0.588

0.613

0.636

0.658

0.679

0.698

0.716

0.734

0.750

0.766

0.795

0.822

0.835

0.892

0.982

1.052

1.110

1.159

1.201

1.239

1.272

1.401

1.493

1.622

1.713

1.784

2.005

00

0,05

0.479

0.505

0.529

0.552

0.573

0.593

0.612

0.629

0.646

0.662

0.677

0.705

0.731

0.743

0.797

0.884

0.951

1.006

1.053

1.093

1.129

1.161

1.284

1.371

1.493

1.580

1.648

1.859

00

0,1

0.420

0.445

0.469

0.491

0.511

0.530

0.548

0.565

0.581

0.596

0.611

0.638

0.662

0.674

0.726

0.809

0.873

0.925

0.969

1.008

1.042

1.072

1.188

1.271

1.387

1.470

1.534

1.733

00

0.853

0.895

0.931

0.963

0.992

1.102

1.180

1.290

1.368

1.429

1.617

00

0.786

0.826

0.860

0.890

0.917

1.021

1.095

1.199

1.272

1.329

1.506

00

0.724

0.761

0.794

0.822

0.848

0.945

1.014

1.111

1.180

1.234

1.400

00

0.666

0.701

0.731

0.758

0.781

0.873

0.937

1.028

1.092

1.142

1.297

 ∞

0.611

0.643

0.671

0.696

0.718

0.803

0.863

0.947

1.007

1.054

1.197

00

0.559

0.589

0.615

0.637

0.658

0.736

0.792

0.870

0.925

0.968

1.101

00

0.509

0.536

0.560

0.581

0.600

0.672

0.723

0.794

0.845

0.884

1.006

8

0.462

0.487

0.508

0.527

0.545

0.610

0.656

0.721

0.767

0.803

0.914

8

4-6

1	l.	- ,	-
		/	1
		ł	

	2
	2
l	ίΩ
•	0
	H.
	ct
	R
	m

423

Section 4-6

.

L/					¢	́В	an an an an Anna Iana				
∕в	0	0,05	0,1	0,15	0,2	0,25	0,3	0,35	0,4	0,45	0,5
1	0.766	0.791	0.792	0.784	0.769	0.748	0.721	0.690	0.653	0.611	0.561
1,1	0.795	0.821	0.823	0.815	0.801	0.781	0.756	0.726	0.692	0.652	0.606
1,2	0.822	0.848	0.851	0.844	0.830	0.810	0.786	0.757	0.724	0.685	0.640
1,3	0.847	0.873	0.876	0.869	0.856	0.837	0.813	0.784	0.751	0.713	0.667
1,4	0.870	0.896	0.899	0.893	0.879	0.860	0.837	0.808	0.775	0.736	0.691
1,5	0.892	0.918	0.921	0.914	0.901	0.882	0.858	0.830	0.796	0.757	0.711
1,6	0.912	0.938	0.941	0.934	0.921	0.902	0.878	0.849	0.815	0.776	0.729
1,7	0.931	0.957	0.960	0.953	0.939	0.920	0.896	0.867	0.833	0.793	0.745
1,8	0.949	0.975	0.978	0.971	0.957	0.937	0.913	0.883	0.849	0.808	0.760
1,9	0.966	0.992	0.994	0.987	0.973	0.953	0.928	0.898	0.863	0.822	0.774
2	0.982	1.008	1.010	1.003	0.988	0.968	0.943	0.912	0.877	0.835	0.786
2,2	1.012	1.037	1.039	1.031	1.016	0.995	0.969	0.938	0.902	0.859	0.808
2,4	1.039	1.064	1.066	1.057	1.041	1.020	0.993	0.961	0.923	0.880	0.828
2,5	1.052	1.077	1.078	1.069	1.053	1.031	1.004	0.971	0.933	0.889	0.837
3	1.110	1.133	1.133	1.123	1.105	1.081	1.052	1.017	0.977	0.930	0.875
4	1.201	1.222	1.219	1.205	1.185	1.158	1.125	1.087	1.043	0.992	0.932
5	1.272	1.290	1.285	1.269	1.245	1.216	1.180	1.139	1.091	1.037	0.973
6	1.330	1.346	1.338	1.320	1.294	1.262	1.224	1.180	1.130	1.073	1.006
7	1.379	1.393	1.384	1.363	1.336	1.301	1.261	1.215	1.162	1.103	1.034
8	1.422	1.434	1.423	1.401	1.371	1.335	1.292	1.244	1.190	1.128	1.057
9	1.459	1.470	1.457	1.433	1.402	1.364	1.320	1.270	1.214	1.150	1.077
10	1.493	1.502	1.487	1.462	1.430	1.390	1.345	1.293	1.235	1.170	1.095
15	1.622	1.625	1.605	1.574	1.535	1.490	1.438	1.380	1.316	1.245	1.164
20	1.713	1.713	1.688	1.653	1.610	1.560	1.504	1.442	1.373	1.297	1.211
30	1.842	1.836	1.805	1.764	1.714	1.658	1.596	1.527	1.452	1.370	1.278
40	1.934	1.923	1.888	1.842	1.788	1.728	1.661	1.588	1.508	1.421	1.324
50	2.005	1.991	1.952	1.903	1.845	1.781	1.711	1.634	1.551	1.461	1.360
100	2.225	2.201	2.151	2.091	2.023	1.948	1.867	1.779	1.685	1.583	1.472
∞	©	∞	∞	∞	∞	co	∞	∞	∞	യ	∞

A XI

Chapitre 4

226

.4-6

	l and the second se	An			C	10		1923 STATUS AND CONTRACTOR		Then a transmission	
					~	В				1	
✓ B	0	0,05	0,1	0,15	0,2	0,25	0,3	0,35	0,4	0,45	0,5
	0.700	0.704	0.700	0.704	0.700	0.740	0.704	0.000	0.050		0.504
1	0.766	0.791	0.792	0.784	0.769	0.748	0.721	0.690	0.653	0.611	0.561
1,2	0.852	0.879	0.881	0.874	0.860	0.840	0.815	0.784	0.748	0.705	0.651
1.2	0.900	0.010	0.000	0.015	0.001	0.001	0.950	0.005	0 700	0.740	0.007
1,3	0.930	0.957	0.960	0.953	0.939	0.919	0.893	0.861	0.823	0.743	0.719
1,5	0.966	0.993	0.996	0.989	0.975	0.954	0.928	0.895	0.856	0.809	0.748
1,6	1.000	1.027	1.030	1.022	1.008	0.987	0.960	0.927	0.886	0.837	0.774
1,7	1.033	1.059	1.062	1.054	1.039	1.018	0.990	0.956	0.914	0.864	0.798
1,8	1.064	1.090	1.092	1.085	1.069	1.047	1.019	0.983	0.941	0.888	0.821
1,9	1.094	1.120	1.122	1.113	1.097	1.075	1.045	1.009	0.965	0.911	0.842
2	1.122	1.148	1.150	1.141	1.124	1.101	1.070	1.033	0.988	0.933	0.861
2,2	1.176	1.201	1.202	1.192	1.174	1.149	1.117	1.078	1.030	0.972	0.897
2,4	1.226	1.250	1.250	1.239	1.220	1.193	1.159	1.118	1.068	1.007	0.930
2,5	1.250	1.273	1.273	1.261	1.241	1.214	1.179	1.137	1.086	1.024	0.945
3	1.358	1.378	1.375	1.360	1.337	1.306	1.267	1.220	1.164	1.096	1.011
4	1.532	1.547	1.538	1.518	1.488	1.450	1.404	1.349	1.284	1.207	1.112
5	1.669	1.680	1.666	1.640	1.605	1.561	1.508	1.447	1.375	1.291	1.189
6	1.783	1.790	1.771	1.740	1.700	1.651	1.593	1.526	1.449	1.359	1.250
7	1.880	1.882	1.859	1.825	1.780	1.727	1.665	1.593	1.511	1.416	1.302
8	1.964	1.963	1.936	1.898	1.849	1.792	1.726	1.650	1.564	1.465	1.347
9	2.038	2.034	2.004	1.962	1.910	1.850	1.780	1.701	1.611	1.508	1.386
10	2.105	2.098	2.065	2.020	1.965	1.901	1.828	1.746	1.652	1.546	1.420
15	2.362	2.343	2.298	2.241	2.174	2.098	2.013	1.917	1.811	1.692	1.553
20	2.544	2.517	2.464	2.398	2.322	2.237	2.143	2.038	1.923	1.794	1.646
30	2.802	2.763	2.697	2.619	2.530	2.432	2.325	2.208	2.080	1.938	1.777
40	2.985	2.937	2.862	2.775	2.677	2.571	2.454	2.328	2.191	2.040	1.870
50	3.127	3.072	2.990	2.896	2.792	2.678	2.554	2.421	2.277	2.119	1.941
100	3.568	3.491	3.388	3.272	3.146	3.010	2.864	2.709	2.543	2.363	2.163
∞	∞	8	∞	8	8	8	~	8	00	8	8
J											

B

Chapitre 4

228

229

L/	¢∕B										
∕в	0	0,05	0,1	0,15	0,2	0,25	0,3	0,35	0,4	0,45	0,5
1	0.561	0.61 5	0.644	0.662	0.671	0.673	0.669	0.656	0.636	0.605	0.561
1,1	0.588	0.642	0.672	0.691	0.702	0.705	0.702	0.692	0.673	0.646	0.606
1,2	0.613	0.648	0.698	0.718	0.729	0.734	0.731	0.722	0.705	0.679	0.640
1,3	0.636	0.691	0.722	0.742	0.754	0.759	0.757	0.748	0.732	0.706	0.667
1,4	0.658	0.714	0.745	0.765	0.777	0.782	0.781	0.772	0.756	0.730	0.691
1,5	0.679	0.734	0.765	0.786	0.798	0.803	0.802	0.793	0.777	0.751	0.711
1,6	0.698	0.754	0.785	0.805	0.818	0.823	0.821	0.812	0.796	0.770	0.729
1,7	0.716	0.772	0.803	0.823	0.836	0.841	0.839	0.830	0.813	0.787	0.745
1,8	0.734	0.789	0.820	0.841	0.853	0.858	0.856	0.846	0.829	0.802	0.760
1,9	0.750	0.805	0.836	0.857	0.869	0.873	0.871	0.861	0.844	0.816	0.774
2	0.766	0.821	0.852	0.872	0.884	0.888	0.885	0.875	0.857	0.829	0.786
2,2	0.795	0.85 0	0.880	0.900	0.911	0.915	0.912	0.901	0.882	0.853	0.808
2,4	0.822	0.876	0.906	0.926	0.936	0.939	0.935	0.924	0.904	0.873	0.828
2,5	0.835	0.889	0.919	0.937	0.948	0.951	0.946	0.934	0.914	0.883	0.837
3	0.892	0.945	0.973	0.990	0.999	1.000	0.994	0.980	0.957	0.924	0.875
4	0.982	1.032	1.058	1.073	1.079	1.077	1.067	1.049	1.023	0.985	0.932
5	1.052	1.101	1.124	1.136	1.139	1.135	1.122	1.101	1.071	1.030	0.973
6	1.110	1.156	1.177	1.187	1.188	1.181	1.166	1.143	1.110	1.066	1.006
7	1.159	1.203	1.222	1.230	1.229	1.220	1.203	1.177	1.142	1.096	1.034
8	1.201	1.244	1.261	1.267	1.265	1.253	1.234	1.207	1.170	1.122	1.057
9	1.239	1.280	1.296	1.300	1.296	1.283	1.262	1.233	1.194	1.144	1.077
10	1.272	1.312	1.326	1.329	1.323	1.309	1.286	1.256	1.215	1.164	1.095
15	1.401	1.435	1.444	1.441	1.429	1.409	1.380	1.343	1.296	1.238	1.164
20	1.493	1.522	1.527	1.520	1.503	1.479	1.446	1.404	1.353	1.291	1.211
30	1.622	1.645	1.644	1.631	1.608	1.577	1.538	1.490	1.432	1.363	1.278
40	1.713	1.733	1.727	1.709	1.682	1.646	1.603	1.550	1.488	1.415	1.324
50	1.784	1.800	1.791	1.770	1.739	1.700	1.653	1.597	1.532	1.454	1.360
100	2.005	2.011	1.990	1.958	1.916	1.867	1.808	1.742	1.665	1.577	1.472
∞	∞	∞	∞	∞	©	©	©	∞	∞	∞	∞

LX C

Chapitre 4

230

2

1.7

مانىغەنەر 1

CONTRAINTE Vz SOUS LE CENTRE

ζ	П _с	По
0	0	1
0,1	0,018	0,910
0,2	0,035	0,823
0,3	0,048	0,739
0,4	0,057	0,662
0,5	0,063	0,590
0,6	0,065	0,526
0,7	0,066	0,468
0,8	0,064	0,417
0,9	0,062	0,373
1	0,058	0,333
1,2	0,051	0,269
1,5	0,041	0,199
2	0,029	0,128
2,5	0,020	0,088
3	0,015	0,064
4	0,009	0,037
5	0,006	0,024
6	0,004	0,017
7	0,003	0,013
8	0,002	0,010
9	0,002	0,008
10	0,002	0,006
20	0,000	0,002

ET LE COIN D'UN REMBLAI PYRAMIDAL

=

EXPRESSION DES COEFFICIENTS

$$\begin{split} &\Pi_{\rm C} = \frac{2}{\Pi} \left[\text{Arc sin} \frac{\zeta}{\sqrt{1+2\zeta^2}} - \text{Arc sin} \frac{\zeta}{\sqrt{2(1+\zeta^2)}} \right] \\ &\Pi_{\rm O} = \frac{4}{\Pi} \quad \text{Arc sin} \frac{\sqrt{2+\zeta^2}-\zeta}{2\sqrt{1+\zeta^2}} \end{split}$$

Section 4-6

-

EXPRESSION DES COEFFICIENTS

$$K_{0} = \frac{1}{2\pi} \left[\frac{1}{\beta} \log \left(\alpha + \sqrt{1 + \alpha^{2}} \right) + \frac{\alpha^{2}}{\beta} \log \frac{1 + \sqrt{1 + \alpha^{2}}}{\alpha} \right]$$

$$K_{0} = \frac{1}{2\pi} \left[\frac{1}{\beta} \log \left(\alpha + \sqrt{1 + \alpha^{2}} \right) + \frac{\alpha^{2}}{\beta} \log \frac{1 + \sqrt{1 + \alpha^{2}}}{\alpha} - \frac{(1 - 2\beta)^{2}}{\beta} \log \frac{\alpha - 2\beta + \sqrt{(1 - 2\beta)^{2} + (\alpha - 2\beta)^{2}}}{1 - 2\beta} - \frac{(\alpha - 2\beta)^{2}}{\beta} \log \frac{1 - 2\beta + \sqrt{(1 - 2\beta)^{2} + (\alpha - 2\beta)^{2}}}{\alpha - 2\beta} - \frac{(\alpha - 1)^{2}}{\sqrt{2}\beta} \log \frac{\sqrt{2(1 + \alpha^{2})} + \alpha + 1}{\sqrt{2(1 - 2\beta)^{2} + 2(\alpha - 2\beta)^{2}} - 4\beta + \alpha + 1} \right]$$

$$\begin{split} \mathrm{K}_{\mathbf{A}} &= \frac{1}{2\pi} \left[\frac{1}{2\beta} \log \left(2\,\alpha + \sqrt{1 + 4\,\alpha^2} \right) + \frac{2\,\alpha^2}{\beta} \,\log \frac{1 + \sqrt{1 + 4\,\alpha^2}}{2\,\alpha} \right. \\ &\quad - \frac{1}{2\sqrt{2}\,\beta} \,\log \frac{\sqrt{2\,(1 - 2\,\beta)^2 + 8\,\beta^2 + 4\,\beta - 1}}{\sqrt{2} - 1} \\ &\quad - \frac{(2\,\alpha - 1)^2}{2\sqrt{2}\,\beta} \,\log \frac{\sqrt{2\,(1 - 2\,\beta)^2 + 8\,(\alpha - \beta)^2} + 4\,\beta - 2\,\alpha - 1}{\sqrt{2}\,(1 + 4\,\alpha^2)} \\ &\quad - \frac{(1 - 2\,\beta)^2}{2\,\beta} \,\log \frac{\sqrt{2\,(1 - 2\,\beta)^2 + 8\,(\alpha - \beta)^2} + 2\,\beta}{\sqrt{(1 - 2\,\beta)^2 + 4\,(\alpha - \beta)^2} + 2\,(\beta - \alpha)} \\ &\quad - \frac{2\,(\alpha - \beta)^2}{\beta} \,\log \frac{2\,(\alpha - \beta)}{\sqrt{(1 - 2\,\beta)^2 + 4\,(\alpha - \beta)^2} + 2\,\beta - 1} \\ &\quad - 2\,\beta \,\log \frac{2\,\beta}{\sqrt{(1 - 2\,\beta)^2 + 4\,\beta^2} + 2\,\beta - 1} \\ \end{split}$$

$$K_{B} = \frac{1}{2\pi} \left[\frac{\alpha^{2}}{2\beta} \log \frac{2 + \sqrt{\alpha^{2} + 4}}{\alpha} + \frac{2}{\beta} \log \frac{\alpha + \sqrt{\alpha^{2} + 4}}{2} - \frac{\alpha^{2}}{2\sqrt{2}\beta} \log \frac{\sqrt{2(\alpha - 2\beta)^{2} + 8\beta^{2}} + 4\beta - \alpha}{\alpha(\sqrt{2} - 1)} \right]$$

233

Chapitre 4

$$-\frac{(2-\alpha)^2}{2\sqrt{2}\beta}\log\frac{\sqrt{2(\alpha-2\beta)^2+8(1-\beta)^2+4\beta-\alpha-2}}{\sqrt{2\alpha^2+8}-(\alpha+2)}$$

$$-\frac{(\alpha-2\beta)^2}{2\beta}\log\frac{-2\beta+\sqrt{4\beta^2+(\alpha-2\beta)^2}}{2(\beta-1)+\sqrt{(\alpha-2\beta)^2+4(1-\beta)^2}}$$

$$-\frac{2(1-\beta)^2}{\beta}\log\frac{2(1-\beta)}{2\beta-\alpha+\sqrt{(\alpha-2\beta)^2+4(1-\beta)^2}}$$

$$-2\beta\log\frac{2\beta}{2\beta-\alpha+\sqrt{(\alpha-2\beta)^2+4\beta^2}}\right]$$

$$\begin{split} \mathbf{K}_{\mathbf{C}} &= \frac{1}{2\pi} \left[\frac{1}{\beta} \log \left(\alpha + \sqrt{1 + \alpha^2} \right) + \frac{\alpha^2}{\beta} \log \frac{1 + \sqrt{1 + \alpha^2}}{\alpha} \right. \\ &+ \beta \log \frac{\beta - \alpha + \sqrt{\beta^2 + (\alpha - \beta)^2}}{1 - \beta + \sqrt{\beta^2 + (1 - \beta)^2}} - \frac{1}{\sqrt{2\beta}} \log \frac{\sqrt{2\beta^2 + 2(1 - \beta)^2} + 2\beta - 1}{\sqrt{2} - 1} \right. \\ &- \frac{\alpha^2}{\sqrt{2\beta}} \log \frac{\sqrt{2\beta^2 + 2(\alpha - \beta)^2} + 2\beta - \alpha}{\alpha(\sqrt{2} - 1)} \\ &- \frac{(\alpha - 1)^2}{\sqrt{2\beta}} \log \frac{\sqrt{2(1 - \beta)^2 + 2(\alpha - \beta)^2} + 2\beta - \alpha - 1}{\sqrt{2(1 + \alpha^2)} - (1 + \alpha)} \\ &- \frac{(1 - \beta)^2}{\beta} \log \frac{\sqrt{\beta^2 + (1 - \beta)^2} - \beta}{\sqrt{(1 - \beta)^2 + (\alpha - \beta)^2} + \beta - \alpha} - \frac{(\alpha - \beta)^2}{\beta} \log \frac{\sqrt{\beta^2 + (\alpha - \beta)^2} - \beta}{\sqrt{(1 - \beta)^2 + (\alpha - \beta)^2} + \beta - 1} \\ &+ 2\beta \log (1 + \sqrt{2}) \bigg] \end{split}$$

$$\begin{split} \mathbf{K}_{\mathbf{A}\,\prime} &= \frac{1}{2\,\pi} \left[-\,\frac{\left(1\,-\,2\,\beta\right)^2}{2\,\beta}\,\log\,\frac{2\,\left(\alpha\,-\,2\,\beta\right)\,+\,\sqrt{\left(1\,-\,2\,\beta\right)^2\,+\,4\,\left(\alpha\,-\,2\,\beta\right)^2}}{1\,-\,2\,\beta} \right. \\ &\left. -\,\frac{2\,\left(\alpha\,-\,2\,\beta\right)^2}{\beta}\,\log\,\frac{1\,-\,2\,\beta\,+\,\sqrt{\left(1\,-\,2\,\beta\right)^2\,+\,4\,\left(\alpha\,-\,2\,\beta\right)^2}}{2\,\left(\alpha\,-\,2\,\beta\right)} \right. \\ &\left. -\,\frac{\left(1\,-\,2\,\alpha\,+\,2\,\beta\right)^2}{2\,\sqrt{2}\,\beta}\,\log\,\frac{\sqrt{2\,+\,8\,\left(\alpha\,-\,\beta\right)^2\,+\,2\,\alpha\,-\,2\,\beta\,+\,1}}{\sqrt{2\,\left(1\,-\,2\,\beta\right)^2\,+\,8\,\left(\alpha\,-\,2\,\beta\right)^2}\,+\,2\,\alpha\,-\,6\,\beta\,+\,1} \right] \end{split}$$

234

Section 4-6

$$-\frac{(1-2\beta)^{2}}{2\sqrt{2}\beta}\log\frac{\sqrt{2+8\beta^{2}+2\beta+1}}{(1-2\beta)(\sqrt{2}+1)} + 2\beta\log\frac{1+\sqrt{1+4\beta^{2}}}{2\beta}$$
$$+\frac{2(\alpha-\beta)^{2}}{\beta}\log\frac{1+\sqrt{1+4(\alpha-\beta)^{2}}}{2(\alpha-\beta)} + \frac{1}{2\beta}\log\frac{\sqrt{1+4(\alpha-\beta)^{2}}+2(\alpha-\beta)}{\sqrt{1+4\beta^{2}-2\beta}}\right]$$

$$\begin{split} \mathbf{K}_{\mathbf{B}} &= \frac{1}{2\pi} \left[-\frac{(\alpha - 2\beta)^2}{2\beta} \log \frac{2(1 - 2\beta) + \sqrt{(\alpha - 2\beta)^2 + 4(1 - 2\beta)^2}}{\alpha - 2\beta} \right. \\ &\quad -\frac{2(1 - 2\beta)^2}{\beta} \log \frac{\alpha - 2\beta + \sqrt{(\alpha - 2\beta)^2 + 4(1 - 2\beta)^2}}{2(1 - 2\beta)} \\ &\quad -\frac{(\alpha + 2\beta - 2)^2}{2\sqrt{2\beta}} \log \frac{\sqrt{2\alpha^2 + 8(1 - \beta)^2} + \alpha - 2\beta + 2}{\sqrt{2(\alpha - 2\beta)^2 + 8(1 - 2\beta)^2} + \alpha - 6\beta + 2} \\ &\quad -\frac{(\alpha - 2\beta)^2}{2\sqrt{2\beta}} \log \frac{\sqrt{2\alpha^2 + 8\beta^2} + \alpha + 2\beta}{(\alpha - 2\beta)(\sqrt{2} + 1)} + 2\beta \log \frac{\sqrt{\alpha^2 + 4\beta^2} + \alpha}{2\beta} \\ &\quad +\frac{2(1 - \beta)^2}{\beta} \log \frac{\alpha + \sqrt{\alpha^2 + 4(1 - \beta)^2}}{2(1 - \beta)} + \frac{\alpha^2}{2\beta} \log \frac{2(1 - \beta) + \sqrt{\alpha^2 + 4(1 - \beta)^2}}{-2\beta + \sqrt{\alpha^2 + 4\beta^2}} \\ \end{array} \right]$$

$$\begin{split} \mathrm{K}_{\mathbf{C}} &= \frac{1}{2\pi} \left[\frac{(1-\beta)^2}{\beta} \log \frac{\alpha - \beta + \sqrt{(1-\beta)^2 + (\alpha - \beta)^2}}{-\beta + \sqrt{(1-\beta)^2 + \beta^2}} \right. \\ &+ \frac{(\alpha - \beta)^2}{\beta} \log \frac{1 - \beta + \sqrt{(1-\beta)^2 + (\alpha - \beta)^2}}{-\beta + \sqrt{(\alpha - \beta)^2 + \beta^2}} \\ &+ \beta \log \frac{\alpha - \beta + \sqrt{\beta^2 + (\alpha - \beta)^2}}{\beta (\sqrt{2} - 1)} + \beta \log \frac{1 - \beta + \sqrt{\beta^2 + (1-\beta)^2}}{\beta (\sqrt{2} - 1)} \\ &- \frac{(1-2\beta)^2}{\beta} \log \frac{\alpha - 2\beta + \sqrt{(1-2\beta)^2 + (\alpha - 2\beta)^2}}{1 - 2\beta} \\ &- \frac{(\alpha - 2\beta)^2}{\beta} \log \frac{1 - 2\beta + \sqrt{(1-2\beta)^2 + (\alpha - 2\beta)^2}}{\alpha - 2\beta} \\ &- \frac{(1-2\beta)^2}{\beta\sqrt{2}} \log \frac{\sqrt{2\beta^2 + 2(1-\beta)^2} + 1}{(1-2\beta) (\sqrt{2} + 1)} - \frac{(\alpha - 2\beta)^2}{\beta\sqrt{2}} \log \frac{\sqrt{2\beta^2 + 2(\alpha - \beta)^2} + \alpha}{(\alpha - 2\beta) (\sqrt{2} + 1)} \\ &- \frac{(\alpha - 1)^2}{\beta\sqrt{2}} \log \frac{\sqrt{2(1-\beta)^2 + 2(\alpha - \beta)^2} + 1 + \alpha - 2\beta}}{\sqrt{2(1-2\beta)^2 + 2(\alpha - 2\beta)^2} + 1 + \alpha - 4\beta} \right] \end{split}$$

235

Cas particulier : B = 2c

$$\begin{split} \mathrm{K}_{\mathrm{O}(\mathrm{B}=2\mathrm{c})} &= \mathrm{K}_{\mathrm{B}'(\mathrm{B}=2\mathrm{c})} = \frac{1}{2\pi} \left[2 \log \left(\alpha + \sqrt{1+\alpha^2}\right) \right. \\ &+ 2 \alpha^2 \log \frac{1 + \sqrt{1+\alpha^2}}{\alpha} - \sqrt{2} \left(\alpha - 1\right)^2 \log \frac{\sqrt{2+2\alpha^2} + 1 + \alpha}{\left(\alpha - 1\right) \left(\sqrt{2} + 1\right)} \right] \end{split}$$

$$\begin{split} \mathrm{K}_{\mathrm{A}\,(\mathrm{B}\,=\,2\mathrm{c}\,)} &= \frac{1}{2\,\pi} \left[\log\,(2\,\alpha + \sqrt{1\,+\,4\,\alpha^{\,2}}) + \,4\,\alpha^{\,2}\,\log\,\frac{1\,+\,\sqrt{1\,+\,4\,\alpha^{\,2}}}{2\,\alpha} \right. \\ &\left. - \frac{(2\,\alpha\,-\,1)^{2}}{\sqrt{2}}\,\log\,\frac{(2\,\alpha\,-\,1)\,(\sqrt{2}\,-\,1)}{\sqrt{2\,+\,8\,\alpha^{\,2}} - \,1 - 2\alpha} - \sqrt{2}\,\log\,(1\,+\,\sqrt{2}) \right] \end{split}$$

$$\begin{split} ^{K}_{B}(B = 2 c) &= \frac{1}{2 \pi} \left[\alpha^{2} \log \frac{2 + \sqrt{\alpha^{2} + 4}}{\alpha} + 4 \log \frac{\alpha + \sqrt{\alpha^{2} + 4}}{2} \\ &- \frac{\alpha^{2}}{\sqrt{2}} \log \frac{2 - \alpha + \sqrt{2} (\alpha - 1)^{2} + 2}{\alpha (\sqrt{2} - 1)} - \frac{(2 - \alpha)^{2}}{\sqrt{2}} \log \frac{-\alpha + \sqrt{2} (\alpha - 1)^{2} + 2}{-\alpha - 2 + \sqrt{2} \alpha^{2} + 8} \\ &+ 2 \log \left(1 - \alpha + \sqrt{1 + (\alpha - 1)^{2}} \right) \right] \end{split}$$

$$\begin{split} \mathrm{K}_{\mathrm{C}} \left(\mathrm{B} = 2\mathrm{c}\right) &= \frac{1}{2\pi} \left[2 \log \left(\alpha + \sqrt{1 + \alpha^2}\right) + 2 \alpha^2 \log \frac{1 + \sqrt{1 + \alpha^2}}{\alpha} \\ &+ \log \left(1 - 2 \alpha + \sqrt{1 + (2 \alpha - 1)^2}\right) - (\sqrt{2} - 1) \log \left(1 + \sqrt{2}\right) \\ &- (\alpha - 1)^2 \sqrt{2} \log \frac{2 + 2 \alpha + 2 \sqrt{2 + 2 \alpha^2}}{2 \alpha + \sqrt{2 + 2 (2 \alpha - 1)^2}} \\ &- \alpha^2 \sqrt{2} \log \frac{2 \alpha \left(\sqrt{2} + 1\right)}{2 (\alpha - 1) + \sqrt{2 + 2 (2 \alpha - 1)^2}} \right] \end{split}$$

$$\begin{split} \mathbf{K}_{\mathbf{A}'} \left(\mathbf{B} = 2\mathbf{c} \right) &= \mathbf{K}_{\mathbf{C}'} \left(\mathbf{B} = 2\mathbf{c} \right) = \frac{1}{2\pi} \left[(2\alpha - 1)^2 \log \frac{1 + \sqrt{1 + 2\alpha - 1})^2}{2\alpha - 1} \right. \\ &+ \log \frac{2\alpha - 1 + \sqrt{1 + (2\alpha - 1)^2}}{(\sqrt{2} - 1)^2} \\ &- 2\sqrt{2} (\alpha - 1)^2 \log \frac{2\alpha + \sqrt{2 + 2(2\alpha - 1)^2}}{2(\alpha - 1)(1 + \sqrt{2})} \end{split}$$

BIBLIOGRAPHIE

Le détail des calculs qui nous ont permis d'obtenir les coefficients K pour le calcul du tassement a fait l'objet d'une publication [1]. Nous avons également calculé les coefficients π_c et π_o sans que cela fasse l'objet d'une publication.

REFERENCES

 J.P. GIROUD, "Settlement of an embankment resting on a semi-infinite elastic soil", <u>Highway Research Record</u>, 223, (1968) 18-35.

CHAPITRE 5

FONDATIONS DE FORME QUELCONQUE

- Sur un sol homogène d'épaisseur infinie

- Sur une couche de sol homogène d'épaisseur finie

Section 5-1

5-1

5-2

Section 5-2

SECTION 5-1

FONDATION DE FORME QUELCONQUE

sur un sol homogène d'épaisseur infinie

SOMMAIRE

- Définition du sol
- Définition de la charge
- Calcul direct du tassement
- Calcul des contraintes
- Construction des grilles
- Bibliographie

Chapitre 5

DEFINITION DU SOL

Le sol est supposé <u>homogène sur une épaisseur infinie</u> ("milieu semi-infini"). Si cette hypothèse n'est pas respectée, la contrainte σ_z calculée à l'aide de la méthode donnée ci-après est néanmoins une bonne approximation de la contrainte réelle, sauf peut-être dans le cas d'un sol constitué d'une couche dure reposant sur une couche plus molle. Au contraire, pour que la méthode de calcul direct du tassement donnée ici soit correcte, il faut que les hypothèses (homogénéité et épaisseur infinie) soient respectées, du moins avec une bonne approximation. Par exemple, si le sol est composé d'une couche d'épaisseur H reposant sur un substratum peu déformable, il faut, pour que l'erreur sur le tassement soit inférieure à 20 % que la condition suivante soit respectée :

(1) H≥L+2B,

avec :

L, B : longueur et largeur de la charge.

DEFINITION DE LA CHARGE

La surface sur laquelle est répartie la charge est absolument quelconque ; elle peut même s'étendre à l'infini. La charge est normale, mais sa distribution peut être quelconque :

- si la distribution est uniforme, l'emploi de la méthode est très simple (Voir les exemples 1 et 3) ;
- si la distribution n'est pas uniforme, l'emploi de la méthode est plus compliqué (Voir l'exemple 2).

CALCUL DIRECT DU TASSEMENT

Ce calcul se fait à l'aide de la grille "w". Si la charge considérée équivaut à m cases, le tassement, w, est donné par :

(2)
$$w = 0,01 \frac{1-v^2}{E} pRm$$

Section 5-1

avec :

E, v : module d'Young et coefficient de Poisson du sol ;

- p : charge normale uniforme ou contrainte de référence dans le cas d'une charge distribuée de façon quelconque ;
- R : longueur de référence indiquée sur la grille "w" ;
- m : nombre de cases.

La détermination de m est expliquée par les exemples suivants :

- Utilisation des grilles pour une charge uniforme.

Exemple 1 :

Considérons les deux stocks de tôles A et B dont l'emprise est définie sur la figure 1. Pour le stock A la charge unitaire est de deux bars (4 200 lb/sq. ft) et pour le stock B, de 1,3 bar (2 700 lb/sq. ft). Le sol supposé d'épaisseur infinie a pour module d'Young E = 40 bars (84 000 lb/sq. ft) et pour coefficient de Poisson, v = 0,3. On demande le tassement au point P.

Les opérations à réaliser sont les suivantes :

1. Refaire la figure 1 sur papier calque à une échelle quelconque.

2. Placer ce calque sur la grille "w" en faisant coïncider le point P avec le centre de la grille (Fig. 2).

FIG. 1. - Plan du stock de tôles de l'exemple 1.

FIG. 2. — L'emprise du stock de tôle de l'exemple 1 est dessinée sur calque et reportée sur la grille. L'échelle est donné par R = 15 m (49 ft).

R
Section 5-1

3. En comparant R à l'une quelconque des cotes du dessin reproduit sur calque, en déduire la longueur représentée par R dans cette échelle. Ici : R = 15 m(49 ft).

4. Compter le nombre de cases recouvertes par l'emprise de la charge. Ici, nous trouvons, compte tenu des fractions de cases :

9 cases pour le stock A,

7 cases pour le stock B.

5. Calculer le tassement par la formule (2), soit ici :

$$w = 0,01 \times 15 \times \frac{1 - (0,3)^2}{40} [2 \times 9 + 1,3 \times 7] = 0,09 \text{ m} = 9 \text{ cm};$$

$$w = 0,01 \times 49 \times \frac{1 - (0,3)^2}{84\ 000} [4\ 200 \times 9 + 2\ 700 \times 7] = 0,3 \text{ ft.}$$

- Utilisation de la grille pour une charge non uniforme.

Il est possible, quoique moins rapide, d'utiliser la grille pour calculer le tassement provoqué par une charge non uniformément répartie, comme nous allons le voir sur un exemple.

Exemple 2 :

Considérons le remblai défini sur la figure 3. Sa masse volumique est $p = 1,68 \text{ g/cm}^3$ (105 lb/cu. ft). Il repose sur un sol qui a pour module d'Young E = 19 bars (40 000 lb/sq. ft) et pour coefficient de Poisson v = 0,3. On demande le tassement du point P, milieu du grand côté du remblai.

Comme dans l'exemple 1, le plan du remblai tracé sur papier calque est reporté sur la grille w (Fig. 4). L'échelle que nous avons arbitrairement choisie est telle que R = 20,8 m (69 ft). La symétrie du problème permet de ne faire le comptage que sur la moitié du remblai. Ce comptage étant assez long nous ne le détaillons que pour le secteur coloré en gris sur la figure 4. En allant du centre vers le bord, ce secteur contient 6 cases entières et trois fractions de cases. Dans le tableau 1 nous avons indiqué la charge moyenne subie par chacune de ces cases ou fractions de cases. On en déduit le *nombre équivalent de cases* du secteur, en l'occurence 2,96. En additionnant les valeurs ainsi obtenues pour tous les secteurs on obtient le *nombre équivalent de cases* pour tout le remblai, soit 21,6.

section A.A.

section B.B.

FIG. 3. — Définition du remblai de l'exemple 2. Les tirets correspondent à des contraintes augmentant par pas de 0,2 p, si p est la charge sous l'arête centrale.

Par ailleurs, la charge p au centre du remblai vaut : $p = 3 \times 1.680 \times 9,81 \times 10^{-5} = 0,495$ bar $= 10 \times 105 = 1.050$ lb/sq. ft. Le calcul du tassement se fait alors immédiatement à l'aide de la formule (2): $w = 0,01 \times \frac{1 - (0.3)^2}{19} \times 0,495 \times 20,8 \times 21,6 = 0,11$ m = 11 cm, $= 0,01 \times \frac{1 - (0.3)^2}{10000} \times 1.050 \times 69 \times 21,6 = 0,36$ ft.

R

FIG. 4. — Le plan du remblai de l'exemple 2 est reporté sur la grille w. Le comptage des cases du secteur grisé est détaillé dans le tableau 1. 247

N ^o de la case à partir du centre	le la case Fractionnement à partir de la case a centre		Nombre équivalent de la case		
	A	В	$\frac{A \times B}{P}$		
1	1	0,1 p	0,1		
2	1	0,3 p	0,3		
3	1	0,45 p	0,45		
Σ_{\pm}	1	0,6 p	0,6		
5	1	0,75 p	0,75		
6	1	0,5 p	0,5		
7	0,9	0,25 p	0,22		
8	0 , 4	0,1 p	0,04		
9	0,05	0,05 p	0,00		
Nombre équivalen	2,96				

TABLEAU 1. — Détail du comptage des cases du secteur coloré en gris sur la figure 4.

CALCUL DES CONTRAINTES

Nous n'indiquons ici que le calcul de la contrainte σ_z . Ce calcul se fait à l'aide de la grille " σ_z ". Si la charge considérée équivaut à m cases, la contraintes σ_z est donnée par :

(3) $\sigma_{z} = 0,005 \text{ mp},$

avec :

p : charge normale uniforme ou contrainte de référence dans le cas d'une charge distribuée de façon quelconque ;

m : nombre de cases.

La détermination de m dans le cas d'une charge normale uniformément répartie est expliquée par l'exemple suivant.

Section 5-1

Exemple 3 :

Reprenons l'exemple 1 et calculons la contrainte σ_z à la profondeur z = 6 m (20 ft) à la verticale du point P.

Les opérations à réaliser sont les suivantes :

1. Refaire la figure 1 sur papier calque à l'échelle obtenue en faisant z = 6 m (20 ft) sur la grille " σ_{g} ".

2. Placer ce calque sur la grille " σ_z " en faisant coïncider le point P avec le centre de la grille (Fig. 5).

3. Compter le nombre de cases recouvertes par l'emprise de la charge. Ici nous trouvons, compte tenu des fractions de cases :

16 cases pour le stock A,

11 cases pour le stock B.

4. Calculer la contrainte $\sigma_{_{\rm T}}$ par la formule (3) :

 $\sigma_{\pi} = (0,005 \times 16 \times 2) + (0,005 \times 11 \times 1,3) = 0,23$ bar

= (0,005 × 16 × 4 200) + (0,005 × 11 × 2 700) = 485 lb/sq. ft.

Remarquons que :

- pour calculer σ_z en un autre point situé à la même profondeur, il suffit de déplacer le calque sur la grille ;
- pour calculer σ_z à une profondeur différente, il faut refaire le plan de la charge sur calque à une autre échelle ;
- pour calculer σ_z due à une charge répartie non uniformément, on procèdera avec la grille " σ_z " comme dans l'exemple 2 avec la grille "w".

FIG. 5. – L'emprise du stock de tôles est dessinée sur calque et reportée sur la grille σ_z . L'échelle est donnée par z = 6 m (20 ft) (voir l'exemple 3).

CONSTRUCTION DES GRILLES

1. Grille "w".

Les cercles concentriques, en nombre infini, ont pour rayon r les termes de la progression arithmétique suivante :

r/R = 1/12,5, 2/12,5, 3/12,5,...

2. Grille "o_".

Les cercles concentriques, au nombre de 9, ont pour rayon les valeurs suivantes :

r/z = 0,270, 0,400, 0,518, 0,637, 0,766, 0,918, 1,110, 1,387 et 1,908.

BIBLIOGRAPHIE

Les grilles "w" et " σ_z " sont dues à Newmark qui a également donné des grilles analogues pour σ_x et ($\sigma_x + \sigma_y + \sigma_z$) [3, 4, 5]. Par ailleurs Barksdale et Harr [1, 2] ont donné une grille analogue pour le cas de charges tangentielles (cette grille n'est pas reproduite ici).

REFERENCES

- R. BARKSDALE and M.E. HARR, "An Influence chart for Vertical Stress Increase due to Horizontal Shear Loadings", <u>Highway Research Record</u>, 108 (1966), 11-18.
- [2] M.E. HARR, "Foundations of theoretical Soil Mechanics", Mac Graw Hill (New York, 1966), p. 89.
- [3] N.M. NEWMARK, "Estimating Earth Pressures", <u>Engineering News Record</u> (January 6, 1938), 23-24.
- [4] N.M. NEWMARK, "Influence charts for computation of stresses in elastic foundations", Univ. of Illinois Eng. Exp. Station Bulletin, 338 (1942).
- [5] N.M. NEWMARK, "Influence charts for computation of vertical displacements in elastic foundations", <u>Univ. of Illinois Eng. Exp. Station Bulletin</u>, 367 (1947).

SECTION 5-2

FONDATION DE FORME QUELCONQUE

sur une couche de sol d'épaisseur finie

SOMMAIRE

- Définition du sol
- Définition de la charge
- Calcul des contraintes
- Calcul direct du tassement
- Construction des grilles
- Bibliographie

DEFINITION DU SOL

Le sol constitue une <u>couche homogène</u>, d'épaisseur H, reposant sur un <u>subs</u>-<u>tratum indéformable</u> auquel elle adhère parfaitement. Si cette adhérence n'est pas parfaite, le tassement sera plus important. Si la couche de sol n'est pas parfaitement homogène, la méthode indiquée ci-après fournira un ordre de grandeur du tassement à condition que l'on ait pu estimer une valeur moyenne des propriétés du sol pour toute la couche.

DEFINITION DE LA CHARGE

La surface sur laquelle est répartie la charge est absolument quelconque ; elle peut même s'étendre à l'infini. La charge est normale mais sa distribution peut être quelconque :

- si la distribution est uniforme, l'emploi de la méthode est très simple (voir Ex. 1 et 2) ;
- si la distribution n'est pas uniforme, l'emploi de la méthode est plus compliqué (voir Ex. 3).

CALCUL DES CONTRAINTES

Le calcul des contraintes n'est pas indiqué ici. On pourra se reporter à la section relative à une fondation de forme quelconque reposant sur un sol d'épaisseur infinie, sachant que l'erreur ainsi commise est acceptable pour les contraintes, alors qu'elle ne le serait pas pour les tassements.

CALCUL DIRECT DU TASSEMENT

Ce calcul se fait à l'aide de grilles données ci-après (5 grilles, pour v = 0, 0, 2, 0, 3, 0, 4 et 0,5). Si la charge considérée équivaut à m cases de la grille relative à la valeur du coefficient de Poisson, v, du sol, le tassement est donné par :

(1)
$$w = 0,003 \frac{pH}{E} m$$

avec :

- E : module d'Young du sol,
- H : épaisseur de la couche de sol,
- p : charge normale uniforme ou contrainte de référence dans la cas d'une charge distribuée de façon quelconque,
- m : nombre de cases (les cases situées à l'intérieur du cercle gris sont positives et celles situées à l'extérieur sont négatives).

Nous allons exposer l'utilisation de ces grilles à l'aide d'exemples :

- Utilisation des grilles pour une charge uniforme.

Exemple 1 :

Considérons les deux stocks de tôles A et B, dont l'emprise est définie sur la figure 1. Pour le stock A, la charge unitaire est de 2 bars (4 200 lb/sq. ft) et pour l'autre de 1,3 bar (2 700 lb/sq. ft). L'épaisseur de la couche de sol est de 12 m (40 ft), son module est de 40 bars (84 000 lb/sq. ft) et son coefficient de Poisson vaut 0,3. On demande le tassement au point P.

Les opérations à réaliser sont les suivantes :

1. Refaire la figure 1 sur papier calque à une échelle telle que H = 12 m (40 ft) soit bien égal à la longueur H indiquée sur la grille relative à v = 0,3.

FIG. 1. - Définition des stocks de tôles de l'exemple 1.

FIG. 2. — L'emprise du stock est dessinée sur calque et reportée sur la grille relative à v = 0,3. L'échelle est donnée par H = 12 m (40 ft).

2. Placer ce calque sur cette grille en faisant coïncider P avec le centre (Fig. 2).

3. Compter le nombre de cases recouvertes par l'emprise de la charge. Ici, nous trouvons (compte tenu des fractions de cases) :

19 cases pour le stock A,

13 cases pour le stock B.

4. Calculer le tassement par la formule (1), soit ici :

$$w = 0,003 \left(\frac{2 \times 12}{40} \times 19 + \frac{1.3 \times 12}{40} \times 13\right) = 0,034 + 0,015 = 0,049 \text{ m} = 5 \text{ cm}$$
$$= 0,003 \left(\frac{4200 \times 40}{84000} \times 19 + \frac{2700 \times 40}{84000} \times 13\right) = 0,115 + 0,05 = 0,165 \text{ ft} = 2 \text{ in}.$$

Remarques.

1. Pour calculer le tassement d'un point P' autre que P il suffit de déplacer le calque en amenant le point P' en coïncidence avec le centre de la grille.

2. Si la valeur du coefficient de Poisson du sol est comprise entre deux grilles, il faudra interpoler.

3. A titre de contrôle, nous avons comparé les résultats obtenus à l'aide des grilles pour des fondations rectangulaires uniformément chargées à ceux que nous avons pu établir directement par ailleurs. L'écart ne dépasse jamais 3 %.

Exemple 2 :

Cet exemple est destiné à illustrer le cas de cases négatives. Considérons une couche d'argile molle saturée, de 40 m (133 ft) d'épaisseur et dont le module d'Young, mesuré dans un essai non drainé, vaut 20 bars (42 000 lb/sq. ft). Elle supporte un bassin elliptique dont le grand axe mesure 40 m (133 ft) et le petit axe, 24 m (80 ft). Ce bassin est brusquement rempli d'eau sur 4,3 m (14 ft) de haut. Quel tassement immédiat peut-on estimer au point P situé à 8 m (26 ft) du bassin, sur le grand axe ?

Le chargement étant rapide, le coefficient de Poisson doit être pris égal à 0,5. En suivant le processus indiqué dans l'exemple 1, on compte (Fig. 3) :

• environ 12 cases positives

• environ 2 cases négatives,

soit, 10 cases.

FIG. 3. — Le plan du bassin elliptique est reporté sur la grille relative à v = 0,5, l'échelle étant donnée par H = 40 m (133 ft). La partie foncée de l'ellipse recouvre 2 cases né-gatives alors que la partie claire recouvre 12 cases positives.

Par ailleurs, la charge unitaire vaut : $p = 4,3 \times 1\ 000 \times 9,81 \times 10^{-5} = 0,42$ bar $= 14 \times 62,5 = 880$ lb/sq. ft. Le calcul est alors immédiat : $w = \frac{0,42 \times 40}{20} \times 10 \times 0,003 = 0,025 = 2,5$ cm $= \frac{880 \times 130}{42\ 000} \times 10 \times 0,003 = 0,082$ ft = 1 inch.

- Utilisation des grilles pour une charge non uniforme.

Dans les deux exemples précédents, la charge était uniformément répartie sur toute sa surface d'application. Nous allons voir, sur un exemple, qu'il est possible, quoique moins rapide, d'utiliser les grilles pour calculer le tassement provoqué par une charge variant d'un point à un autre.

Exemple 3 :

Considérons le remblai défini sur la figure 4. La masse volumique du remblai est $\rho = 1,68$ g/cm³ (105 lb/cu. ft). Le sol de fondation a pour module E = 19 bars (40 000 lb/sq. ft) et pour coefficient de Poisson v = 0,3. On demande le tassement au point P, milieu du grand côté du remblai.

Comme dans l'exemple 1, le plan du remblai sur papier calque est placé sur la grille relative à v = 0,3. La symétrie du problème permet de ne faire le comptage que sur la moitié du remblai. Considérons le secteur coloré en gris sur la figure 5. En allant du centre vers le bord, il contient 9 cases entières et une fraction de la dizième case. Dans le tableau, nous avons indiqué la charge moyenne subie par chaque case. On en déduit le *"nombre équivalent de cases"* du secteur, en l'occurence 3,27, et en additionnant les valeurs obtenues pour tous les secteurs, on obtient *"le nombre équivalent de cases"* pour tout le remblai, soit 38,3.

Par ailleurs, la charge, p, au centre du remblai, vaut : $p = 3 \times 1\ 680 \times 9,81 \times 10^{-5} = 0,495$ bar $= 10 \times 105 = 1\ 050$ lb/sq. ft. Le calcul est alors immédiat : $w = \frac{0,495 \times 25}{19} \times 38,3 \times 0,003 = 0,075$ m = 7,5 cm $w = \frac{1\ 050 \times 82}{40\ 000} \times 38,3 \times 0,003 = 0,25$ ft = 3 inches.

FIG. 4. — Définition du remblai de l'exemple 3 et de sa fondation. Les tirets correspondent à des contraintes augmentant par pas de 0,2 p, si p est la charge sous l'arête centrale.

FIG. 5. – Le remblai est reporté sur la grille v = 0,3. Le comptage des cases dans le secteur grisé est détaillé dans le texte.

ź

N° de la case à partir du centre	Fractionnement de la case	Charge moyenne sur la case	Nombre équiva- lent de la case A x B			
	A	В	 P			
1	1	0.05 p	0.05			
2	1	0.1 p	0.1			
3	1	0.2 p	0.2			
4	1	0.3 p	0.3			
5	1	0.4 p	0.4			
6	1	0.5 p	0.5			
7	1	0.6 p	0.6			
8	1	0.6 p	0.6			
9	1	0.4 p	0.4			
10	3/4	0.15 p	0.12			
Nombre équivalent de cases pour l'ensemble 3.27 du secteur						

TABLEAU 1. — Détail du comptage des cases du secteur coloré en gris sur la figure 5.

CONSTRUCTION DES GRILLES

Les valeurs des rayons des cercles concentriques sont données dans le tableau ci-après où le trait horizontal sépare les cases positives des négatives.

2	0	0.2	0.3	0.4	0.5
	0	0	0	0	0
	0.03	0.032	0.035	0.037	0.045
	0.06	0.065	0.07	0.075	0.09
	0.00	0.005			
	0.097	0.1	0.105	0.117	0.135
	0.132	0.135	0.145	0.163	0.190
	0.17	0.175	0.19	0.212	0.255
	0.21	0.215	0.235	0.270	0.335
r	0.25	0.255	0.285	0.332	0.44
H	0.29	0.305	0.34	0.41	0.75
	0.34	0.355	0.40	0.505	1.15
	0.39	0.415	0.475	0.65	1.4
	0.445	0.48	0.565	1.00	1.66
	0.51	0.555	0.68	1.50	1.96
	0.585	0.65	1.25	2.27	2.36
	0.67	0.77	~	~	
				1	
	0.785	1.5			
	0.94		J		
	1.75				

5-2

BIBLIOGRAPHIE

La façon dont nous avons obtenu ces grilles fait l'objet d'une publication [1].

REFERENCE

 J.P. GIROUD, "Détermination rapide du tassement d'une couche de sol compressible supportant une charge quelconque", <u>Le Moniteur des Travaux Publics et du</u> <u>Bâtiment</u> (14 août 1971), 129-133.

FONDATIONS DE GRANDE LONGUEUR

Quand peut-on considérer que la longueur d'une fondation est grande ? Voir page suivante

Charge concentrée sur une ligne de grande longueur

— sur un sol homogène d'épaisseur infinie	Section 6-1	
— sur une couche de sol d'épaisseur finie	Section 6-2	
- sur un sol composé de deux couches	Section 6-3	6-1
Fondation de grande longueur linéairement chargée		6-2
- sur un sol homogène d'épaisseur infinie	Section 6-4	0-2
 sur une couche de sol d'épaisseur finie (charge normale uniforme seulement) 	Section 6-5	6-3
 — sur un sol composé de deux couches (charge normale uniforme seulement) 	Section 6-6	6-4
 sur un sol d'épaisseur infinie dont le module augmente avec la profondeur (charge normale uniforme seulement) 	Section 6-7	6-5
Fondation rigide de grande longueur à charge inclinée et excentrée		6-6
- sur un sol homogène d'épaisseur infinie	Section 6-8	6-7
 sur une couche de sol d'épaisseur finie (charge normale seulement) 	Section 6-9	6-8
Remblai de grande longueur et de section triangulaire		
ou trapézoïdale		6-9
— sur un sol homogène d'épaisseur infinie	Section 6-10	11
- sur une couche de sol d'épaisseur finie	Section 6-11	6-10
Charge de grande longueur distribuée de façon quelconque		6-11
— sur un sol homogène d'épaisseur infinie	Section 6-12	
- sur une couche de sol d'épaisseur finie	Section 6-13	6-12

QUAND PEUT-ON CONSIDERER QUE LA LONGUEUR D'UNE FONDATION RECTANGULAIRE EST GRANDE ?

Toutes les valeurs de tassement, rotation et contraintes présentées sous le titre "fondations de grande longueur" ont été obtenues en déformation plane, c'est à dire en considérant des fondations de longueur infinie et dont la charge est distribuée uniformément sur toute la longueur. De même, pour les "remblais de grande longueur" les calculs ont été faits avec des remblais de longueur infinie et de section constante. Les fondations et remblais réels n'ayant jamais une longueur infinie, on peut se demander à partir de quelle longueur ces résultats sont applicables. Distinguons trois cas :

- Calcul direct du tassement.

Si la fondation est <u>rigide</u> (semelle, radier rigide) l'erreur sur le tassement est inférieure à 20 % dès que :

 $L/B > (L/B)_{min}$ donné par la figure 1.

avec :

L, B : longueur et largeur de la fondation.

Par ailleurs, considérons la charge <u>souple</u> (remblai ou éventuellement grand radier) définie sur la figure 2, avec :

- d : distance entre le point P où l'on calcule le tassement et la plus proche des deux extrémités de la charge ;
- H : épaisseur de la couche de sol.

Le calcul direct du tassement en P peut se faire avec une bonne approximation en considérant que la charge est de grande longueur, sous réserve que les deux conditions suivantes soient vérifiées :

d > 2 B et d > 2 H.

La seconde condition montre notamment que l'on ne peut supposer H = ∞ (milieu semi-infini) que si L est vraiment infinie, ce qui n'est jamais le cas. Autrement dit, le calcul direct du tassement d'une fondation de longueur infinie est impossible avec l'hypothèse du milieu semi-infini.

FIG. 2. — Couche de sol compressible reposant sur un substratum indéformable et supportant une charge de grande longueur (remblai). Le point P de la surface du sol, où l'on calcule le tassement, est situé à la distance d de la plus proche des deux extrémités de la charge.

- Calcul de la rotation.

L'erreur commise sur la rotation d'une fondation rectangulaire en utilisant les résultats relatifs aux fondations de grande longueur est inférieure à 15 % dès que :

L/B > 1,5.

Il s'agit, bien entendu, d'une rotation autour du grand axe de la fondation (parallèle à L). Si la fondation, même très longue, tourne autour de son petit axe il n'est pas possible de faire le calcul en supposant qu'elle est de grande longueur car la distribution de charge et de déplacement n'est pas uniforme sur la longueur et il ne s'agit pas d'un problème de déformation plane.

- Calcul des contraintes.

Considérons la charge définie sur la figure 3 a. L'erreur commise sur une contrainte à la verticale du bord de la charge est donnée par la courbe de la figure 3 b. Cette courbe est valable pour :

- τ_{zx} due à une charge normale et σ_{z} due à une charge quelconque, quel que soit ν ;
- τ_{xx} due à une charge tangentielle et σ_{x} due à une charge quelconque, seulement pour $\nu = 0.5$.

(v : coefficient de Poisson du sol)

FIG. 3. - (a) Définition du point M où l'on calcule la contrainte : d est la distance à la plus proche des deux extrémités de la charge.

(b) Courbe donnant l'erreur relative sur la contrainte en M calculée en considérant que la charge est de longueur infinie.

BIBLIOGRAPHIE

Les diverses estimations que nous venons de donner de l'erreur commise en utilisant l'hypothèse de déformation plane pour des fondations rectangulaires ont été obtenues par des considérations théoriques dont on trouvera le détail dans les publications citées en référence [1, 2].

REFERENCES

- [1] J.P. GIROUD, "Calcul pratique des contraintes dans un sol supportant une charge de grande longueur", <u>Construction</u>, <u>25</u>, 6 (Juin 1970), 221-226.
- [2] J.P. GIROUD, "Tassement d'une fondation rectangulaire sur une couche de sol compressible". La technique des Travaux (à paraître).

SECTION 6-1

CHARGE CONCENTRÉE SUR UNE LIGNE DE GRANDE LONGUEUR

(semelle filante) exercée sur une couche de sol d'épaisseur infinie

SOMMAIRE

- Définition du sol
- Définition de la charge
- Calcul du tassement
- Calcul des contraintes
- Tables et Graphiques
- Expression des coefficients
- Bibliographie

DEFINITION DU SOL

Le sol est supposé homogène sur une épaisseur infinie.

DEFINITION DE LA CHARGE

La charge f (force par unité de longueur) est concentrée sur une ligne de longueur infinie à la surface du sol (Fig. 1). Elle a pour composante normale f_n et tangentielle f_t (Fig. 2). Son inclinaison est δ .

FIG. 1. — Définition de la force f par unité de longueur. Les forces élémentaires sont contenues dans des plans parallèles à Ozx et sont inclinées d'un angle δ par rapport à la verticale (voir Fig. 2).

FIG. 2. - Composantes et inclinaison de f.

280

CALCUL DU TASSEMENT

La charge étant de longueur infinie et le sol étant d'épaisseur infinie, la théorie de l'élasticité donne un tassement infini pour tous les points de la surface du sol. Le calcul direct du tassement ne pourra donc être fait qu'avec des hypothèses (sur le sol et sur la charge) plus proches de la réalité.

CALCUL DES CONTRAINTES

Les contraintes en tout point d'un quelconque plan perpendiculaire à la ligne chargée sont donnés par :

$\sigma_{\rm z}$	=	$\frac{1}{z} \left(f_n g_0 + \frac{x}{ x } f_t g_1 \right)$
τ_{zx}	=	$\frac{1}{z} \left(\frac{x}{ x } f_n g_1 + f_t g_2 \right)$
σx	=	$\frac{1}{z} \left(f_n g_2 + \frac{x}{ x } f_t g_3 \right)$

avec :

 g_0, g_1, g_2 et g_3 : coefficients sans dimensions donnés dans un tableau et un graphique pour $\xi = |\mathbf{x}|/z$;

x, z : coordonnées du point où l'on calcule les contraintes.

On peut aussi utiliser les formules suivantes :

$\sigma_{\rm z}$	=	$\frac{1}{x}$	$\left(\frac{x}{ x }\right)$	fn	g3	+	ft	g ₂),
τ _{zx}	=	$\frac{1}{x}$	(f _n	g2	+ 73	x x	ft	g ₁),
σ _x	=	$\frac{1}{x}$	$\left(\frac{x}{x}\right)$	- f _n	g ₁	+	ft	go).

les coefficients g_0 , g_1 , g_2 et g_3 étant pris avec $\xi = z/|x|$.

Exemple :

Considérons une semelle filante de très grande longueur exerçant sur le sol une charge de 100 000 newtons/m (6 850 lb/ft) inclinée de $\delta = 20^{\circ}$. Quelle est la valeur de σ_{g} au point de coordonnées x = -0,9 m (-3 ft) et z = 3 m (10 ft) ?

Calculons d'abord les composantes de la charge : f_n = 100 000 × cos 20° = 94 000 newtons/m = 6 850 × cos 20° = 6 400 lb/ft ; f_t = 100 000 × sin 20° = 34 000 newtons/m = 6 850 × sin 20° = 2 300 lb/ft. Pour $\xi = |\mathbf{x}|/z = 0, 4$, le tableau donne : $g_0 = 0,473$ et $g_1 = 0,189$ et pour $\xi = \mathbf{z}/|\mathbf{x}| = 2,5$, il donne : $g_2 = 0,076$ et $g_3 = 0,189$. On peut alors calculer σ_z : $\sigma_z = \frac{1}{3}(94\ 000 \times 0,473 - 34\ 000 \times 0,189) = 0,13$ bar $= \frac{-1}{1,2}(-94\ 000 \times 0,189 + 34\ 000 \times 0,076) = 0,13$ bar $= \frac{-1}{10}(6\ 400 \times 0,473 - 2\ 300 \times 0,189) = 260$ lb/sq. ft $= \frac{-1}{4}(-6\ 400 \times 0,189 + 2\ 300 \times 0,076) = 260$ lb/sq. ft.

TABLE ET GRAPHIQUE

Coefficients g₀, g₁, g₂, g₃.... p. 284-285

EXPRESSION DES COEFFICIENTS

$$g_{0} = \frac{2}{\pi (1 + \xi^{2})^{2}}$$

$$g_{1} = \frac{2 \xi}{\pi (1 + \xi^{2})^{2}}$$

$$g_{2} = \frac{2 \xi^{2}}{\pi (1 + \xi^{2})^{2}}$$

$$g_{3} = \frac{2 \xi^{3}}{\pi (1 + \xi^{2})^{2}}$$

BIBLIOGRAPHIE

Les contraintes provoquées dans un demi-plan à l'état de déformation plane sous l'effet d'une charge concentrée exercée à sa surface a été résolu par Flamant [1]. Ces résultats sont reproduits dans un grand nombre d'ouvrages et l'on trouve des tables de valeurs numériques notamment dans Florin [2] et Szechy [3].

REFERENCES

- M. FLAMANT, "Sur la répartition des pressions dans un solide rectangulaire chargé transversalement", <u>Comptes-Rendus de l'Académie des Sciences</u>, 114 (Paris, 1892), 1465-1468.
- [2] V.A. FLORIN, "Osnovi Mekanika Gruntov", Tome 1, Editions d'Etat pour le Génie Civil (Moscou 1959), p. 334-339.
- 3 K. SZECHY, "Der Grundbau", Tome 1, Springer Verlag (Vienne, 1963), p. 257.
| | | 9 ₀ | 9 ₁ | g ₂ | g ₃ |
|----|-----|----------------|----------------|----------------|----------------|
| | 0 | 0.637 | 0 | 0 | 0 |
| | 0.1 | 0.624 | 0.062 | 0•006 | 0.001 |
| | 0.2 | 0.589 | 0.118 | 0•024 | 0.005 |
| | 0.3 | 0•536 | 0.161 | 0.048 | 0.014 |
| | 0.4 | 0•473 | 0.189 | 0.076 | 0.030 |
| | 0.5 | 0•407 | 0.204 | 0.102 | 0.051 |
| | 0.6 | 0.344 | 0.207 | 0.124 | 0.074 |
| | 0.7 | 0.287 | 0.201 | 0.141 | 0.098 |
| | 0.8 | 0.237 | 0.189 | 0.151 | 0.121 |
| њ. | 0,9 | 0•194 | 0•175 | 0•157 | 0.142 |
| | 1 | 0•159 | 0•159 | 0•159 | 0.159 |
| | 1.1 | 0•130 | 0•143 | 0•158 | 0.173 |
| E | 1,2 | 0.107 | 0.128 | 0•154 | 0.185 |
| | 1,3 | 0.088 | 0.114 | 0•149 | 0.193 |
| | 1,4 | 0.073 | 0.102 | 0•142 | 0.199 |
| Ľ | 1.5 | 0.060 | 0.090 | 0.136 | 0•203 |
| | 1.6 | 0.050 | 0.080 | 0.129 | 0•206 |
| | 1.7 | 0.042 | 0.072 | 0.122 | 0•207 |
| | 1.8 | 0.035 | 0.064 | 0.115 | 0.207 |
| | 1.9 | 0.030 | 0.057 | 0.108 | 0.205 |
| | 2 | 0.025 | 0.051 | 0.102 | 0.204 |
| | 2.1 | 0.022 | 0•046 | 0•096 | 0.201 |
| | 2.2 | 0.019 | 0•041 | 0•090 | 0.199 |
| | 2.3 | 0.016 | 0•037 | 0•085 | 0.196 |
| | 2.5 | 0.012 | 0.030 | 0.076 | 0.189 |
| | 3 | 0.006 | 0.019 | 0.057 | 0.172 |
| | 4 | 0.002 | 0.009 | 0.035 | 0.141 |
| | 5 | 0.001 | 0.005 | 0.024 | 0.118 |
| | 10 | 0.000 | 0.001 | 0.006 | 0.062 |
| | 00 | 0 | 0 | 0 | 0 |

σ

0.7.

0.6

G

0.4

0.3-

0.2.

0.1

0.5.

0

0

SECTION 6-2

CHARGE NORMALE CONCENTRÉE SUR UNE LIGNE DE GRANDE LONGUEUR

(semelle filante) exercée sur une couche de sol homogène d'épaisseur finie

SOMMAIRE

- Définition du sol
- Définition de la charge
- Calcul des contraintes
- Bibliographie

DEFINITION DU SOL

La couche de sol homogène d'épaisseur H repose sur un substratum indéformable auquel elle adhère parfaitement.

DEFINITION DE LA CHARGE

La charge est normale et concentrée sur une ligne de longueur infinie (Fig. 1). Les charges parfaitement concentrées n'existent pas dans la pratique mais elles fournissent une bonne approximation des contraintes et tassements pour les points suffisamment éloignés de leur point d'application.

FIG. 1. - Définition du sol et de la charge.

CALCUL DES CONTRAINTES

Le calcul de la contrainte σ_z se fait à l'aide de la formule suivante :

$$\sigma_z = \frac{f_n}{z} g_{HO},$$

avec:

f_n : force par unité de longueur ; z : profondeur du point où l'on calcule σ_z ;

288

 \boldsymbol{g}_{Ho} : coefficient sans dimensions dépendant de x/z et ν ;

x : abscisse du point où l'on calcule σ_{π} ;

v : coefficient de Poisson du sol.

Le coefficient g_{Ho} est donné dans un graphique pour v = 0. Notons que la courbe donnée sur ce graphique pour z/H = 1 est très voisine de celle obtenue pour v = 0.5.

Exemple :

Considérons une charge normale de 94 000 newtons/m (6 400 lb/ft) exercée à la surface d'une couche de sol de 7 m (23 ft) d'épaisseur et de coefficient de Poisson v = 0. Quelle est la contrainte σ_z à 5,5 m (18 ft) de profondeur et à une distance de la verticale de la charge égale à 2,2 m **(**7 ft) ?

Les paramètres du problème sont :

 $\frac{z}{H} = \frac{5.5}{7} = \frac{18}{23} = 0.8,$ $\frac{x}{z} = \frac{2.2}{5.5} = \frac{7}{18} = 0.4.$ On lit sur le graphique : $g_{H0} = 0.52.$ D'où : $\sigma_{z} = \frac{94\ 000}{5.5} \times 0.52 = 89\ 000\ \text{pascals} = 0.89\ \text{bar}$ $= \frac{6\ 400}{18} \times 0.52 = 1\ 850\ \text{lb/sq. ft.}$

Notons que si le sol avait été homogène sur une épaisseur infinie, il aurait fallu remplacer ${\bf g}_{\rm HO}$ par ${\bf g}_0$ = 0,473.

BIBLIOGRAPHIE

Le coefficient g_{Ho} , pour v = 0, a été calculé par Jelinek [2] que nous remercions de nous avoir autorisé à reproduire ce graphique. La valeur de g_{Ho} pour z/H = 1 et v = 0 a également été calculée par Melan [4] et Marguerre [3]. La valeur donnée par ce dernier auteur est en bon accord avec celle de Jelinek. Par ailleurs Biot [1] a calculé g_{Ho} pour z/H = 1 et v = 0,5. La courbe obtenue est pratiquement confondue avec celle de g_{Ho} pour v = 0.

REFERENCES

- [1] M.A. BIOT, "Effect of certain discontinuities on the pressure distribution in a loaded soil", <u>Physics</u>, <u>6</u>, 12 (December 1935), 367-374.
- [2] R. JELINEK, "Der Einfluss von Gründungstiefe und begrenzter Schichtmächtigkect auf die Druckausbreitung im Baugrund", <u>Die Bautechnik</u>, 22, 6 (Juni 1951), 125-130.
- [3] K. MARGUERRE, "Druckverteilung durch eine elastische Schicht auf starrer rauher Unterlage", <u>Ingenieur-Archiv</u>, 2 (1931), 108-117.
- [4] E. MELAN, "Die Druckverteilung durch eine elastiche Schicht", <u>Beton und Eisen</u>, 18 (1919), 83-85.

SECTION 6-3

CHARGE NORMALE CONCENTRÉE SUR UNE LIGNE DE GRANDE LONGUEUR

(semelle filante) exercée sur un sol composé de deux couches

SOMMAIRE

- Définition du sol
- Définition de la charge
- Calcul du tassement
- Calcul des contraintes
- Tables
- Bibliographie

DEFINITION DU SOL

Le sol est composé de deux couches. La première a une épaisseur H, un module d'Young E_1 et un coefficient de Poisson v_1 . La couche inférieure a une épaisseur infinie, un module d'Young E_2 et un coefficient de Poisson v_2 . Les deux couches adhèrent parfaitement l'une à l'autre (Fig. 1).

FIG. 1. - Définition du sol et de la charge.

DEFINITION DE LA CHARGE

La charge normale f_n est concentrée sur une ligne de longueur infinie à la surface du sol (Fig. 1).

CALCUL DU TASSEMENT

La charge étant de longueur infinie et le sol étant d'épaisseur infinie, la théorie de l'élasticité donne un tassement infini pour tous les points de la surface du sol. Le calcul direct du tassement ne pourra donc être fait qu'avec des hypothèses (sur le sol et sur la charge) plus conformes à la réalité.

CALCUL DES CONTRAINTES

Les contraintes σ_z et τ_z à la surface de séparation des deux couches sont données par :

$$\sigma_{z} = \frac{f_{n}}{H} g_{2H0}$$
$$\tau_{zx} = \frac{f_{n}}{H} g_{2H1}$$

avec :

- f : force par unité de longueur sur la ligne de longueur infinie ;
 - H : épaisseur de la première couche de sol ;
- g_{2H0} et g_{2H1} : coefficients sans dimensions donnés dans un tableau pour diverses valeurs de E_1/E_2 , v_1 , v_2 et x/H mais pour une seule valeur de z : z = H;
- $\text{E}_1, \, \text{E}_2, \, \nu_1, \, \nu_2$: modules d'Young et coefficients de Poisson des deux couches ;
 - x, z : coordonnées du point où l'on calcule les contraintes.

Exemple :

Considérons une charge normale de 94 000 newtons/m (6 400 lb/ft) exercée à la surface d'un sol composé de deux couches. La couche inférieure a une épaisseur infinie et un module $E_2 = 15$ bars (31 400 lb/sq. ft). La couche supérieure a un module $E_1 = 150$ bars (314 000 lb/sq. ft) et une épaisseur H = 5,5 m (18 ft). Les deux couches ont, pour coefficient de Poisson, 0,25. Quelle est la contrainte σ_z en un point de la surface de séparation des deux couches, situé à 2,2 m (7 ft) de l'axe de la charge ?

Les paramètres du problème sont :

$$\frac{E_1}{E_2} = \frac{150}{15} = \frac{314 \ 000}{31 \ 400} = 10,$$

 $v_1 = v_2 = 0,25,$
 $z = H$ et $\frac{x}{H} = \frac{2,2}{5,5} = \frac{7}{18} = 0,4.$
On lit dans le tableau :
 $g_{2H0} = 0,311.$

z = H

			.			x,	′н		
	\mathcal{V}_1	\mathcal{V}_2		0	0.1	0.2	0.4	1	2
	0	0.2	д _{2н0} д _{2н1}	0.636 0	0.624 0.058	0.589 0.109	0.476 0.174	0.164 0.144	0.025 0.042
-	Ũ	0.3	д _{гно} д _{гн1}	0.639 0	0.627 0.055	0.592 0.103	0.480 0.164	0.167 0.132	0.024 0.035
11 N	V ₁ =	\mathcal{V}_2	д _{2н0} д _{2н1}	0.637 0	0.624 0.062	0.589 0.118	0.473 0.189	0.159 0.159	0.026 0.051
E'_E	0.2	0	д _{2н0} д _{2н1}	0.640 0	0.627 0.067	0.590 0.127	0.472 0.204	0.154 0.174	0.025 0.059
	0.3	0	g _{2н0} g _{2н1}	0.641 0	0.628 0.071	0.590 0.133	0.470 0.215	0.151 0.184	0.026 0.065
	0	0.2	g _{2н0} g _{2н1}	0.560 0	0.551 0.052	0.524 0.098	0.434 0.160	0.178 0.151	0.039 0.062
2	U	0.3	g _{2н0} g _{2н1}	0.561 0	0.552 0.048	0.525 0.092	0.437 0.149	0.182 0.138	0.039 0.053
" " 」	0	.3	9 _{2н0} 9 _{2н1}	0.557 0	0.547 0.052	0.520 0.098	0.432 0.161	0.178 0.153	0.039 0.064
Ш Ц	0.2	0	9 _{2н0} 9 _{2н1}	0.568 0	0.558 0.060	0.529 0.113	0.434 0.185	0.169 0.177	0.037 0.078
	0.3		g _{2н0} g _{2н1}	0.567 0	0.557 0.061	0.528 0.116	0.432 0.188	0.167 0.183	0.037 0.082
		0.2	9 _{2НО} 9 _{2Н1}	0.367 0	0.364 0.026	0.353 0.051	0.316 0.087	0.194 0.111	0.081 0.082
10		0.3	9 _{2н0} 9 _{2н1}	0.365 0	0.361 0.024	0.351 0.046	0.315 0.079	0.196 0.100	0.083 0.071
Е2 "	0.	25	9 _{2н0} 9 _{2н1}	0.360 0	0.356 0.025	0.346 0.048	0.311 0.082	0.194 0.106	0.083 0.078
Ш. Т	0.2	0	д _{2н0} д _{2н1}	0.377 0	0.373 0.031	0.360 0.059	0.320 0.101	0.190 0.130	0.077 0.097
	0.3		д _{2н0} д _{2н1}	0.372 0	0.368 0.030	0.356 0.058	0.317 0.100	0.190 0.129	0.078 0.097

(d'après SUNDARA-RAJA-IYENGAR et ALWAR)

D'où : $\sigma_z = \frac{94\ 000}{5.5} \times 0.311 = 0.053 \times 10^5$ pascals = 0.053 bar $\sigma_z = \frac{6\ 400}{18} \times 0.311 = 110$ lb/sq. ft.

Notons que si le sol avait été homogène ($E_1 = E_2$ et $v_1 = v_2$) on aurait eu 0,473 au lieu de 0,311.

BIBLIOGRAPHIE

Les valeurs numériques des coefficients g_{2H0} et g_{2H1} ont été calculées par Sundara-Raja-Iyengar et Alwar [1].

REFERENCE

[1] K.T. SUNDARA-RAJA-IYENGAR and R.S. ALWAR, "Stresses in layered half-plane", <u>Journal of the Soil Mechanics and Foundations Division</u>, ASCE, EM 4 (August 1964), 79-96.

SECTION 6-4

FONDATION DE GRANDE LONGUEUR EXERÇANT UNE CHARGE LINÉAIREMENT RÉPARTIE

(semelle filante, radier souple de grande longueur, fondation de mur de soutènement) sur un sol homogène d'épaisseur infinie

SOMMAIRE

- Définition du sol
- Définition de la charge
- Calcul du tassement
- Calcul de la rotation
- Calcul des contraintes
- Tables et Graphiques
- Expression des coefficients
- Bibliographie

Chapitre 6

DEFINITION DU SOL

Le sol est supposé <u>homogène sur une épaisseur infinie</u> ("milieu semi-infini"). Si le sol n'est pas homogène, les valeurs données ici pour les contraintes, en particulier celles de σ_z , peuvent être considérées comme une bonne approximation des contraintes réelles (sauf, peut-être, dans le cas où le sol est constitué d'une couche dure reposant sur une couche bien plus molle). On verra, par ailleurs, que l'hypothèse du milieu semi-infini ne permet pas le calcul du tassement. En revanche elle permet le calcul de la rotation de la fondation.

DEFINITION DE LA CHARGE

- Description de la charge.

Le calcul est fait pour une fondation infiniment longue ayant même distribution de charge dans toute section droite. Cette distribution est supposée linéaire et elle est définie, sur la figure 1, par deux contraintes, $\vec{\sigma}_1$, de composantes σ_{n1} et τ_1 , et $\vec{\sigma}_2$, de composantes σ_{n2} et τ_2 .

FIG. 1. — Définition de la distribution linéaire des contraintes.

- Conventions de signe (Fig. 2).
 - · L'axe Oz est vertical et orienté vers le bas.
 - · L'axe Ox est horizontal et orienté vers la droite.
 - Le repère Oxyz est de sens direct.
 - En suivant l'axe Ox on rencontre d'abord le côté numéroté 1 puis le côté numéroté 2 de la fondation.
 - Les contraintes normales sont positives s'il s'agit de compressions (autrement dit, les contraintes normales exercées par la fondation sur le sol sont positives si elles ont même sens que Oz).

FIG. 2. - Convention de signes.

- Les contraintes tangentielles exercées par la fondation sur le sol sont positives si elles ont même sens que Ox.
- L'inclinaison δ', angle que fait une contrainte avec la normale à la surface du sol, est positive dans le sens trigométrique. Elle est définie par :

(1)
$$tg\delta' = \frac{\tau}{\sigma_n}$$

avec :

 τ , σ_n : composantes tangentielle et normale d'une contrainte $\dot{\sigma}$.

- Décomposition de la charge

La distribution linéaire de contraintes est complètement définie par les contraintes $\vec{\sigma}_1$ et $\vec{\sigma}_2$ sur les côtés 1 et 2. On peut la considérer comme la somme de deux charges linéaires (Fig. 3) : l'une purement normale, définie par p et q, l'autre purement tangentielle, définie par s et t. D'où les relations :

(2)
$$\begin{cases} p = \frac{\sigma_{n1} + \sigma_{n2}}{2} & q = \frac{\sigma_{n1} - \sigma_{n2}}{2} \\ s = \frac{\tau_{4} + \tau_{2}}{2} & t = \frac{\tau_{1} - \tau_{2}}{2} \end{cases}$$

(3)
$$\begin{cases} \sigma_{n1} = p + q & \sigma_{n2} = p - q \\ \tau_{1} = s + t & \tau_{2} = s - t \end{cases}$$

Pour le calcul de la rotation et des contraintes, dans la suite, nous utiliserons les quatre termes, p, q, s et t pour définir la charge.

Exemple 1 :

6-4

Considérons une charge linéaire définie par : $\sigma_{n1} = 2,4$ bars (5 000 lb/sq. ft) $\delta'_1 = 32^\circ$, $\sigma_{n2} = 0,9$ bar (1 900 lb/sq. ft) $\delta'_2 = 24^\circ$. On demande de décomposer cette charge en p, q, s et t : D'après la formule (1) : $\tau_1 = \sigma_{n1}$ tg $\delta'_1 = 1,5$ bar (3 150 lb/sq. ft), $\tau_2 = \sigma_{n2}$ tg $\delta'_2 = 0,4$ bar (850 lb/sq. ft).

FIG. 3. — Décomposition de la distribution linéaire de contraintes (notons que sur cette figure, p, q, s et t sont positives).

Les formules (2) donnent ensuite : p = 1,65 bar (3 450 lb/sq. ft), q = 0,75 bar (1 550 lb/sq. ft), s = 0,95 bar (2 000 lb/sq. ft), t = 0,55 bar (1 150 lb/sq. ft).

Dans cet exemple les quatre contraintes p, q, s et t sont positives mais, dans le cas général, elles peuvent avoir n'importe quel signe, comme le montre la figure 4 où les signes indiqués dans les cadres sont respectivement ceux de p, q, s et t.

ĸ

FIG. 4. - Quelques exemples de décomposition. Les signes indiqués sont respectivement ceux de p, q, s et t.

Section 6-4

- Résultante

La résultante de la charge linéairement répartie est une force par unité de longueur, f, dont les composantes normale et tangentielle sont f_n et f_t (Fig. 5). Son inclinaison δ est définie par :

(4) $\vartheta = \operatorname{Arctg} \frac{f_t}{f_n}$

FIG. 5. — Définition de la résultante des charges exercées par la fondation sur le sol (sur cette figure, E_x et δ sont positifs).

Sa ligne d'application est définie par sa distance ℓ au côté 1 de la fondation ou sa distance E_x à l'axe de la fondation (ℓ est toujours positif mais E_x peut être positif ou négatif). Le moment par unité de longueur calculé par rapport à l'axe de la fondation est ℓ , compté positivement dans le sens trigonométrique. On peut établir les relations suivantes :

(5)
$$\begin{cases} f_n = (\sigma_{n1} + \sigma_{n2}) a = 2 pa = f \cos \delta \\ f_t = (\tau_1 + \tau_2) a = 2 sa = f \sin \delta \\ \mathcal{M} = \frac{(\sigma_{n1} - \sigma_{n2}) a^2}{3} = \frac{2 qa^2}{3} = -E_x f_n \end{cases}$$

GIROUD. Tables pour le calcul des fondations. Tome 2

43

21

(6)
$$\begin{cases} E_{x} = \frac{(\sigma_{n2} - \sigma_{n1})a}{3(\sigma_{n2} + \sigma_{n1})} = -\frac{qa}{3p} = -\frac{2}{3}\frac{qa^{2}}{3n} \\ \ell = a + E_{x} = \frac{2a(2\sigma_{n2} + \sigma_{n1})}{3(\sigma_{n2} + \sigma_{n1})} = \frac{a(3p - q)}{3p} \\ \sigma_{n1} = \frac{f_{n}}{2a}(1 - 3E_{x}/a) \\ \sigma_{n2} = \frac{f_{n}}{2a}(1 - 3E_{x}/a) \\ \sigma_{n2} = \frac{f_{n}}{2a}(1 + 3E_{x}/a) \\ \tau_{1} + \tau_{2} = \frac{f_{n}}{a} \\ q = \frac{3f_{n}}{2a}(1 - \ell/a) = -\frac{3E_{x}f_{n}}{2a^{2}} \\ s = \frac{f_{n}}{2a} \end{cases}$$
(8)

Exemple 2 :

Quelle est la résultante de la répartition linéaire de l'exemple 1 sachant qu'elle s'exerce par une fondation de largeur 2 a = 1,8 m (6 ft) ?

En appliquant les formules (5) on obtient : $f_n = 2 \times 1,65 \times 10^5 \times 0,9 = 2,97 \times 10^5$ newtons/m $= 2 \times 3 450 \times 3 = 20 700$ lb/ft. $f_t = 2 \times 0,95 \times 10^5 \times 0,9 = 1,71 \times 10^5$ newtons/m $= 2 \times 2 000 \times 3 = 12 000$ lb/ft.

L'inclinaison de la résultante est donnée par la formule (4) :

$$\delta = \text{Arctg} \frac{f_t}{f_n} = 30^\circ.$$

On en déduit la valeur de f :

$$f = \frac{f}{\cos \delta} = 3,42 \times 10^5 \text{ newton/m} = 23 900 \text{ lb/ft.}$$

(9)

Il en résulte :

(10)
$$q = s = t = 0$$
 et $p = \sigma_{n1} = \sigma_{n2}$

D'où :

(11)
$$\begin{cases} f_n = f = 2 pa \\ f_t = 0 \\ \mathcal{M} = 0 \\ \mathbb{E}_x = 0 \\ \mathcal{L} = a \end{cases}$$

La rotation de la fondation est alors nulle et les formules donnant les contraintes se simplifient considérablement.

CALCUL DU TASSEMENT

Le tassement d'une charge de longueur infinie sur un sol homogène d'épaisseur infinie est infini. Il n'est donc pas possible de faire simultanément les deux hypothèses simplificatrices : longueur infinie de la charge et épaisseur infinie du sol compressible.

Pour faire un calcul direct du tassement il faudra se reporter :

- soit au cas des fondations rectangulaires (sur un sol d'épaisseur infinie ou non);
- soit au cas des fondations de grande longueur (théoriquement de longueur infinie) sur une couche de sol d'épaisseur finie.

Ou bien alors il faudra faire un *calcul indirect* par l'intermédiaire des contraintes données ci-après.

CALCUL DE LA ROTATION

Des quatre charges élémentaires (voir Fig. 3), seules q et s provoquent une rotation de la fondation. Celle-ci ne reste pas plane, mais comme pour les fondations rectangulaires, on peut exprimer la rotation moyenne :

(12)
$$\phi_{\rm m} = \frac{3(1-\nu^2)}{\pi E} q - \frac{(1+\nu)(1-2\nu)}{E} s$$

avec :

- ϕ_{m} : angle fait par le plan moyen de la fondation avec l'horizontale (Fig. 6);
- v, E : coefficient de Poisson et module d'Young du sol ;
- q, s : charges élémentaires provenant de la décomposition de la charge (voir formule (2)).

FIG. 6. — Déformée d'une fondation souple soumise à un moment, et rotation moyenne (Nota : étant donnée la déformée du sol, il y a plusieurs façons de définir la rotation moyenne ϕ_m : nous avons pris la définition proposée par Vogt. Voir la bibliographie à la fin de la section).

L'angle ϕ_m est positif dans le sens trigonométrique. En effet, une charge q positive fait tourner la fondation dans le sens trigonométrique alors qu'une charge s positive la fait tourner dans le sens des aiguilles d'une montre.

Dans le cas particulier s = 0, on a :

(13)
$$\phi_{\rm m} = \frac{3(1-v^2)}{\pi E} q = \frac{18}{\pi} \frac{1-v^2}{E} \frac{M}{(2a)^2}$$
 avec $18/\pi = 5,72$.

Notons enfin que si la charge exercée sur le sol par la fondation est normale et uniformément répartie, sa rotation est nulle d'après la formule (10).

Exemple 3 :

Quelle est la rotation moyenne de la fondation définie dans les exemples 1 et 2 sachant qu'elle repose sur un sol de module d'Young E = 170 bars (355 000 lb/sq. ft) et de coefficient de Poisson v = 0,26 ?

La formule (12) s'applique immédiatement avec les valeurs de q et s déterminées dans l'exemple 1. On en déduit :

 $\phi_m = 3.9 \times 10^{-3} - 3.4 \times 10^{-3} = 0.5 \times 10^{-3}$ radian = 1.7 minute.

CALCUL DES CONTRAINTES

Les contraintes en tout point du sol sont données par les formules suivantes :

(14)

$$\begin{pmatrix}
\sigma_{z} = pk_{o} - \frac{x}{|x|} qm_{o} + \frac{x}{|x|} sk_{1} - tm_{1} \\
\tau_{zx} = \frac{x}{|x|} pk_{1} - qm_{1} + sk_{2} - \frac{x}{|x|} tm_{2} \\
\sigma_{x} = pk_{2} - \frac{x}{|x|} qm_{2} + \frac{x}{|x|} sk_{3} - tm_{3} \\
\sigma_{y} = v(\sigma_{z} + \sigma_{x}) \quad \tau_{xy} = \tau_{yz} = 0$$

avec :

p, q, s et t : quatre charges élémentaires obtenues par décomposition de la charge (voir formule 2) ;

v : coefficient de Poisson du sol ;

x, z : coordonnées du point où l'on calcule les contraintes.;

 k_i, m_i : coefficients sans dimensions dont les valeurs numériques sont données dans les tables et les graphiques suivants en fonction de |x|/a et de z/a;

x : valeur absolue de x ;

a : demi-largeur de la fondation.

Exemple 4 :

Quelle est la contrainte σ_z au point P (Fig. 7) situé à la profondeur de 1,8 m (6 ft) sous le côté n° 1 de la fondation définie dans les exemples 1 et 2 ?

Notons d'abord que x est négatif, d'où : x/|x| = -1. Par ailleurs a = 0,9 m (3 ft), d'où : |x|/a = 1 et z/a = 2. On peut alors lire dans les tables : $k_0 = 0,409$, $k_1 = 0,159$, $m_0 = 0,091$, $m_1 = -0,023$. D'où le calcul de σ_z d'après les valeurs de p, q, s et t données dans l'exem-

ple 1 :

$$\sigma_z = 1,65 \times 0,409 + 0,75 \times 0,091 - 0,95 \times 0,159 + 0,55 \times 0,023 = 0,6 \text{ bar},$$

$$\sigma_z = 3 450 \times 0,409 + 1 550 \times 0,091 - 2 000 \times 0,159 + 1 150 \times 0,023 = 1 260 \text{ lb/sq. ft.}$$

FIG. 7. - Position du point P de l'exemple 4.

TABLES ET GRAPHIQUES

Coefficients	: k _o ,	k1,	k2,	k3	 	 	• •	 p.	310-317
	m _o	, m ₁	, m	2, m3	 	 		 p.	318-325

50
P
0
ct
μ.
0
B
5
7

k		ų		к <u>ж</u> ж	× k	ж 	×к	⇒⊧⇒		a	ĸ	×ĸ		×~		кж	
	0	0	0,2	0,4	0,6	0,8	1,0	1,2	1,6	2	3	4	6	8	10	2 0	4 0
Ž	0	1.000	1.000	1.000	1.000	1.000	0.500	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0,2	C.997	C.996	0.992	0.979	0.909	0.500	0.091	0.007	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0,4	C.977	C.973	0.955	0.906	0.773	0.498	0.224	0.040	0.011	0.001	0.000	0.000	C.000	0.000	0.000	0.000
	0,6	C.937	C.928	0.896	0.825	0.691	0.495	0.298	0.088	0.030	0.004	0.001	0.000	0.000	0.000	0.000	0.000
Į	0,8	C.881	C.869	0.829	0.755	0.638	0.489	0.338	0.137	0.056	0.010	0.003	0.001	0.000	0.000	0.000	0.000
	1,0	C.818	C.805	0.766	0.696	0.598	0.480	0.360	0.177	0.084	0.017	0.005	0.001	0.000	0.000	0.000	0.000
	1,2	C.755	C.743	0.7C7	0.646	0.564	0.468	0.371	0.209	0.111	0.026	0.009	0.002	0.001	0.000	0.000	0.000
	1,4	C.696	C.685	0.653	0.602	0.534	0.455	0.374	0.232	0.135	0.037	0.013	0.003	0.001	0.000	0.000	0.000
z/a	1,6	0.642	C.633	0.605	0.562	0.506	0.440	0.373	0.248	0.155	0.048	0.018	0.004	C.001	0.001	0.000	0.000
	1,8	C.593	C.585	0.563	0.526	0.479	0.425	0.368	0.258	D.172	0.060	0.023	0.005	0.002	0.001	0.000	0.000
	2,0	C.55C	O.543	0.524	0.494	0.455	0.409	0.360	0.265	0.185	0.071	0.029	0.007	0.002	0.001	0.000	0.000
	3,0	C.396	C.353	0.385	0.372	0.355	0.334	0.311	0.261	0.211	0.114	0.059	0.018	0.007	0.003	0.000	0.000
Ĩ	4	C.306	C.3C4	C.3C1	C.294	0.285	0.275).263	0.235	0.205	0.134	0.083	0.031	0.013	0.006	0.000	0.000
	5	C.248	C.247	0.245	O.242	0.237	0.231	0.224	0.207	0.188	0.139	0.097	0.044	0.021	0.010	0.001	0.000
	6	C.2C8	C.2C8	C.2C7	O.205	0.202	0.198	0.194	0.183	0.171	0.136	0.103	0.054	0.028	0.015	0.001	0.000
	8	C.158	C.157	0.157	G.156	0.155	0.153).151	0.146	0.140	0.122	0.102	0.066	0.040	0.025	0.003	0.000
Ŭ	10 20 40 100	C.126 C.C64 C.C32 C.C13	0.126 C.C64 0.C32 C.C13	0.126 0.064 0.032 0.013	0.126 0.063 0.032 C.013	0.125 0.063 9.032 0.013	0.124 0.063 0.032 0.013	0.123 0.063 0.032 0.032 0.013	0.120 0.063 0.032 0.013	0.117 0.062 0.032 0.013	0.107 0.061 0.031 0.013	0.095 0.059 0.031 0.013	0.069 0.054 0.030 0.013	0.048 0.047 0.029 0.013	0.032 0.041 0.028 0.012	0.005 0.016 0.020 0.012	0.000 0.003 0.008 0.009

-
Ġν
+

k		*				ж	ж			a	ĸ			<u> </u>		к	
	1	0	0,2	0 ,4	0,6	0,8	1,0	1,2	1,6	2	3	4	6	8	10	20	40
Ĩ	0	C.CCC	C.CCC	0.000	0.000	0.000	0.318	3.303	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0,2	C.CCC	C.C1C	0.025	0.059	0.155	0.315	0.157	0.030	0.011	0.002	0.001	0.000	0.000	0.000	0.000	0.000
	0,4	C.CCC	C.C32	0.074	0.140	0.240	0.306	0.244	0.091	0.038	0.009	0.004	0.001	0.000	0.000	0.000	0.000
	0,6	C.CCC	C.C51	0.110	0.181	0.255	0.292	0.264	0.143	0.072	0.019	0.008	0.002	C.001	0.000	0.000	0.000
Į	0,8	C.CCC	C.C61	0.125	0.191	0.247	0.274	0.262	0.176	0.103	0.032	0.013	0.004	0.002	0.001	0.000	0.000
	1,0	C.CCC	C.C64	C.127	0.185	0.231	0.255	0.252	0.193	0.127	0.045	0.020	0.006	0.002	0.001	0.000	0.000
	1,2	C.CCC	C.C61	C.120	0.172	0.212	0.234	0.237	0.199	0.144	0.058	0.027	0.008	C.004	0.032	0.000	0.000
	1,4	C.CCC	C.C56	0.110	0.156	0.192	0.214	0.223	0.197	0.154	0.070	0.034	0.011	0.005	0.002	0.000	0.000
z/a	1,6	C.CCC	C.C51	C.099	C.140	0.173	0.194	0.203	0.192	0.158	0.080	0.041	0.014	C.006	0.003	0.000	0.000
	1,8	C.CCC	0.C45	C.088	C.126	0.155	0.176	0.187	0.183	0.159	0.089	0.048	0.017	C.007	0.004	0.001	0.000
	2,0	C.CCC	0.040	O.078	O.112	0.139	0.159	0.171	0.174	0.157	0.095	0.054	0.020	O.009	0.005	0.001	0.000
	3,0	C.CCC	C.C23	O.045	O.065	0.083	0.098	0.110	0.124	0.127	0.106	0.075	0.035	C.018	0.010	0.001	0.000
Ĭ	4	0.000	C.C14	0.028	0.041	0.053	0.064	0.073	0.088	0.096	0.095	0.079	0.046	0.026	0.015	0.002	0.000
	5	0.000	C.CC9	0.019	0.028	0.036	0.044	0.051	0.063	D.072	0.080	0.075	0.052	0.032	0.021	0.004	0.000
	6	0.000	C.CC7	0.013	0.020	0.026	0.032	0.037	0.047	0.055	0.066	0.067	0.053	0.037	0.025	0.005	0.001
	8	0.000	C.CC4	C.CC8	0.011	0.015	0.019	0.022	0.029	0.034	0.045	0.050	0.049	0.040	0.030	0.008	0.001
Ŭ	10	0.000	0.002	0.005	0.007	0.010	0.012	0.015	0.019	0.023	0.032	0.037	0.041	0.038	0.032	0.010	0.002
	20	c.ccc	C.CC1	0.001	0.002	0.003	0.003	0.004	0.005	0.006	0.009	0.012	0.016	0.019	0.020	0.016	0.005
	40	c.ccc	C.CCC	0.000	0.000	0.001	0.001	0.001	0.001	0.002	0.002	0.003	0.005	C.006	0.007	0.010	0.008
	100	c.ccc	C.CCC	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.002	0.001+

Section 6-4

313

314

Chapitre 6

k		×	×к→		×ĸ	ж	ж			/a	×	×				икж	=>
	2	0	0,2	0,4	0,6	0,8	1,0	1,2	1,6	2	3	4	6	8	10	2 0	4 0
X	0 0,2 0,4 0,6 0,8 1,0	1.CCC 0.752 C.538 C.375 C.260 C.182	1.CCC 0.743 C.527 C.367 0.257 C.182	1.000 0.712 0.493 0.347 0.250 0.184	1.000 0.646 0.438 0.321 0.245 0.190	1.000 0.521 0.383 0.309 0.252 0.205	0.500 0.437 0.376 D.320 0.269 0.225	0.000 0.352 0.366 0.328 0.284 0.243	0.000 0.149 0.238 D.267 0.263 0.245	0.000 0.082 0.147 0.188 0.208 0.211	0.000 0.031 0.061 0.086 0.107 0.122	0.000 0.017 0.033 0.048 0.062 0.074	0.000 0.007 0.014 0.021 0.028 0.034	0.000 0.004 0.008 0.012 0.016 0.020	0.000 0.003 0.005 0.008 0.010 0.010	0.000 0.001 0.001 0.002 0.003 0.003	0.000 0.000 0.000 0.000 0.001 0.001 0.001
z/a -	1,2 1,4 1,6 1,8 2,0 3,0	C.129 C.C94 C.C69 C.C53 C.C41 C.C41	C.131 C.C96 C.C72 C.C55 C.C43 O.C15	0.137 0.104 0.081 0.063 0.050 0.019	0.149 0.118 0.094 0.075 0.061 0.024	0.167 0.136 0.111 0.091 0.075 0.032	0.188 0.156 0.130 0.108 0.091 0.040	0.206 0.175 0.148 0.125 0.107 0.050	0.221 0.196 0.173 0.151 0.132 0.068	0.205 0.192 0.177 0.161 0.146 0.084	0.132 0.138 0.139 0.138 0.134 0.102	0.084 0.091 0.097 0.101 0.103 0.097	0.040 0.046 0.050 0.055 0.058 0.068	0.023 0.027 0.030 0.033 0.036 0.046	0.015 0.017 0.020 0.022 0.024 0.032	0.004 0.004 0.005 0.006 0.006 0.009	0.001 0.001 0.001 0.002 0.002
Ŭ Ŭ	4 5 6 8 10 20 40 100	C.CC6 C.CC3 C.CC2 C.CC1 C.CCC C.CCC C.CCC C.CCC C.CCC	0.007 C.CC4 C.CC2 C.CC1 C.CCC C.CCC C.CCC C.CCC C.CCC	0.009 0.005 0.003 0.001 0.001 0.000 0.000	0.012 0.006 0.004 0.002 0.001 0.000 0.000 0.000	9.016 0.009 0.005 0.002 9.001 0.000 0.000 0.000	0.020 0.011 0.007 0.003 0.002 0.000 0.000 0.000	0.026 0.015 0.009 0.004 0.004 0.000 0.000 0.000	0.037 0.022 0.014 0.006 0.003 0.000 0.000 0.000	0.049 0.030 0.019 0.009 0.005 0.001 0.000 0.000	0.071 0.048 0.033 0.017 0.010 0.001 0.000 0.000	0.078 0.059 0.044 0.025 0.015 0.002 0.000 0.000	0.068 0.061 0.053 0.036 0.025 0.005 0.005 0.001 0.000	C.051 O.051 O.049 O.040 C.030 O.008 O.001 C.000	0.038 0.041 0.041 0.038 0.032 0.010 0.002 0.000	0.012 0.014 0.016 0.019 0.020 0.016 0.005 0.000	0.003 0.004 0.005 0.005 0.007 0.010 0.010 0.002

k		×		******		ЭкЭк	ж	—×к——>		/a	К			<u>ж</u>		ик <u></u> ж	=>
	3	0	0,2	0,4	0,6	0,8	1,0	1,2	1,6	2	3	4	6	8	10	20	4 0
Į	0,1 0,2 0,4 0,6	C.CCC C.CCC C.CCC	C.258 C.237 C.189 C.136	0.539 0.487 0.373 0.263	0.883 0.758 0.541 0.368	1.399 1.027 0.662 0.445	co 1.154 0.731 0.502	1.527 1.152 0.780 0.552	0.933 D.872 0.733 D.586	0.699 0.677 0.619 0.542	0.441 0.437 0.423 0.402	0.325 0.323 0.318 0.310	0.214 0.214 0.212 0.210	C.160 O.160 O.159 O.158	0.128 0.128 0.127 0.127	D. 064 0. 064 0. 064 0. 064	0.032 0.032 0.032 0.032
Ť	0,8 1,0 1,2 1,4	0.000 0.000 0.000	0.093 C.C63 C.C42 C.C29	0.179 0.121 0.083 0.057	0.250 0.172 0.120 0.085	0.307 0.216 0.155 0.112	0.356 0.258 0.189 0.140	0.402 0.298 0.223 0.169	0.461 0.361 0.284 0.224	0.461 0.385 0.319 0.263	0.375 0.345 0.313 0.281	0.298 0.285 0.269 0.253	0.206 0.202 0.197 0.192	0.157 0.155 0.153 0.150	0.126 0.125 0.124 0.123	0.064 0.063 0.063 0.263	0.032 0.032 0.032 0.032 0.032
z/a	1,6 1,8 2,0 3,0	C.CCC C.CCC C.CCC C.CCC	C.C2C C.C14 C.C1C C.CC3	0.040 0.029 0.021 0.006	0.061 0.044 0.033 0.009	0.082 0.061 0.046 0.014	0.105 0.080 0.061 0.019	0.130 0.100 0.078 0.026	0.178 0.142 0.114 0.042	0.216 0.178 0.147 0.060	0.251 U.222 0.196 0.102	0.236 0.218 0.201 0.128	0.186 0.179 0.172 0.135	0.148 0.145 0.141 0.122	0.121 0.120 0.118 0.107	0.063 0.063 0.362 0.061	0.032 0.032 0.032 0.031
Ĩ	4 5 6 8	C.CCC C.CCC G.COO C.CCC	C.CC1 C.CCC C.CCC C.CCC C.CCC	C.002 O.0C1 O.0C0 O.0C0	0.003 0.001 0.001 0.000	0.005 0.002 0.001 0.000	0.007 0.003 0.002 0.001	0.010 0.005 0.002 0.001	0.018 0.008 0.004 0.002	0.027 0.013 0.007 0.003	0.054 0.030 0.017 0.007	0.078 0.048 0.030 0.013	0.101 0.073 0.053 0.027	0.102 0.082 0.065 0.040	0.095 0.081 0.069 0.047	0.059 0.056 0.054 0.047	0.031 0.031 0.030 0.029
Ŭ	10 20 40 100	C.CCC C.CCC C.CCC C.CCC	C.CCC C.CCC C.CCC C.CCC	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000	0.001 0.000 0.000 0.000	0.001 0.000 0.000 0.000	0.003 0.000 0.000 0.000	0.00.0 0.000 0.000.0 0.000.0	0.015 0.001 0.000 0.000	0.024 0.003 0.000 0.000	0.032 0.005 0.000 0.000	0.041 0.016 0.003 0.000	0.028 0.020 0.038 0.001

318

GIROUD. - Tables pour le calcul des fondations. Tome 2

m		Ũ	ik XK	XK		×i~		X 	a la	ĸ	×		к————————————————————————————————————	——————————————————————————————————————	-
	0	0	0,2	0,4	0,6	0,8	1,0	1,2	1,6	2	3	4	6	8	10
X X X	0 0,2 0,4 0,6 0,8 1,0 1,2 1,4	C.CCC C.CCC C.CCC C.CCC C.CCC C.CCC C.CCC C.CCC	0.200 C.197 C.182 C.155 C.125 C.125 O.C97 C.C75 G.C58	0.400 0.392 0.353 0.292 0.232 0.180 0.139 0.108	0.600 0.576 0.487 0.386 0.300 0.233 0.181 0.142	0.800 0.696 0.522 0.400 0.313 0.247 0.197 0.158	0.500 D.437 0.376 0.320 0.269 0.225 0.188 0.156	0.000 0.078 0.171 0.199 0.196 0.181 0.161 0.141	0.000 0.005 0.027 0.056 0.078 0.091 0.095 0.094	0.000 0.001 0.006 0.017 0.029 0.041 0.049 0.055	0.000 0.000 0.001 0.002 0.004 0.007 0.010 0.013	0.000 0.000 0.000 0.000 0.001 0.002 0.003 0.004	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
z/a	1,6 1,8 2 3	C.CCC C.CCC G.CCO G.COO	0.C45 C.C35 0.C28 0.010	0.084 0.066 0.053 0.020	0.113 0.090 0.073 0.028	0.128 0.104 0.085 0.035	0.130 0.108 0.091 0.040	0.122 0.105 0.090 0.043	0.090 0.083 0.076 0.044	0.057 0.058 0.056 0.041	0.016 0.019 0.021 0.024	0.005 0.006 0.008 0.012	0.001 0.001 0.001 0.003	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000
Ď	4 5 6 8	C.CCC 0.000 0.COC C.CCC	C.CC5 G.CC3 G.OO1 C.CC1	0.009 0.005 0.003 0.001	0.013 0.007 0.004 0.002	0.017 0.009 0.006 0.003	0.020 0.011 0.037 0.003	0.023 0.013 0.008 0.004	0.026 0.015 0.010 0.005	0.026 0.017 0.011 0.005	0.021 0.016 0.012 0.007	0.014 0.012 0.010 0.007	0.005 0.006 0.006 0.005	0.002 0.002 0.003 0.003	0.001 0.001 0.001 0.002
	10 20 40 100	0.000 0.000 0.000 0.000 0.000	C.CCC 0.COO C.CCC C.CCC	0.001 0.000 0.000 0.000	0.001 0.000 0.000 0.000	0.001 0.000 0.000 0.000	0.002 0.000 0.000 0.000	0.002 0.000 0.000 0.000	0.002 D.000 0.000 D.000	0.003 0.000 0.000 0.000	0.004 0.001 0.000 0.000	0.004 0.001 0.000 0.000	0.004 0.001 0.000 0.000	0.003 0.001 0.000 0.000	0.002 0.001 0.000 0.000

6-4

m	4	Ņ		XC	*			, IX	a a	ж е жк			к <u></u> ж		ж
	1	0	0,2	0,4	0,6	0,8	1,0	1,2	1,6	2	3	4	6	8	10
Ĩ	0 0,2 0,4 0,6 0,8 1,0 1,2 1,4	- C.COO - C.150 - O.215 - C.225 - C.226 - C.182 - C.155 - C.131	-0.000 -0.147 -0.205 -0.210 -0.193 -0.169 -0.124	-0.000 -0.132 -0.168 -0.164 -0.150 -0.133 -0.117 -0.102	-0.000 -0.094 -0.091 -0.084 -0.082 -0.079 -0.076 -0.071	0.000 0.020 0.038 0.018 -0.004 -0.020 -0.031 -0.037	0.318 0.228 0.156 0.100 0.059 0.030 0.009 -0.005	0.000 0.118 0.147 0.121 0.088 0.059 0.037 0.019	0.000 0.018 0.050 0.069 0.071 0.064 0.053 0.041	0.000 0.005 0.018 0.031 0.040 0.043 0.043 0.042 0.039	0.000 0.001 0.003 0.006 0.010 0.013 0.015 0.017	0.000 0.000 0.001 0.002 0.003 0.004 0.006 0.007	0.000 0.000 0.000 0.001 0.001 0.001 0.001	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001	0.000
$^{z/a}$	1,6 1,8 2 3	-0.111 -C.C95 -C.C81 -C.C42	-0.105 -C.C9C -C.C78 -C.C41	-0.089 -0.078 -0.069 -0.038	-0.066 -0.060 -0.055 -0.034	-0.039 -0.040 -0.039 -0.029	-0.014 -0.019 -0.023 -0.023	0.007 -0.002 -0.008 -0.017	0.030 0.021 0.013 -0.006	0.033 0.028 0.022 0.003	0.018 0.018 0.018 0.011	0.008 0.009 0.010 0.009	0.002 0.002 0.003 0.004	0.001 0.001 0.001 0.002	0.000 0.000 0.000 0.001
	4 5 8 10 20 40	-C.C25 -C.C16 -C.C11 -0.007 -C.C04 -C.C01 -0.000	- C. C24 - C. C16 - C. C11 - C. C06 - C. C04 - C. C01 - C. C00	-0.023 -0.016 -0.011 -0.006 -0.004 -0.001 -0.000	-0.022 -0.015 -0.011 -0.006 -0.004 -0.001 -0.000	-0.020 -0.014 -0.010 -0.006 -0.004 -0.001 -0.000	-0.017 -0.013 -0.010 -0.006 -0.004 -0.001 -0.000	-0.015 -0.012 -3.009 -0.006 -0.004 -0.004 -0.001	-0.009 -0.009 -0.007 -0.005 -0.004 -0.004 -0.001	-0.004 -0.006 -0.006 -0.004 -0.003 -0.003 -0.001 -0.000	0.004 0.000 -0.002 -0.003 -0.002 -0.001 -0.001	0.006 0.003 0.001 -0.001 -0.001 -0.001 -0.000	0.004 0.004 0.003 0.001 0.000 -0.001 -0.000	0.002 0.003 0.002 0.002 0.001 -0.000 -0.000	0.001 0.002 0.002 0.001 0.001 -0.000 -0.000

Chapitre 6

322

m ₂	ě	1K	XK	×—		 >κ	,)	a	кетак	×ĸ		к—— ж	XK	ж	
	2	0	0,2	0,4	0,6	0,8	1,0	1,2	1,6	2	3	4	6	8	10
g the second sec	0 0,2 0,4 0,6 0,8 1,0 1,2 1,4	C.CCC C.CCC C.CCC C.CCC C.CCC C.CCC C.CCC C.CCC C.CCC	C.2CC C.1C1 C.C30 -C.CC8 -C.C23 -C.C25 -C.C25 -C.C21 -C.C21	C.4CC 0.188 0.048 -C.019 -C.043 -0.048 -C.044 -C.038 -0.032	C. 600 0. 236 0. 046 -0. 028 -0. 053 -0. 058 -0. 054 -0. 048 -0. 041	0.800 0.211 0.042 -0.020 -0.044 -0.052 -0.052 -0.048 -0.043	0.500 0.206 0.084 0.018 -0.016 -0.033 -0.039 -0.040 -0.039	0.000 0.192 0.128 0.062 0.019 -0.020 -0.020 -0.027 -0.027	0.000 0.064 0.087 0.076 0.053 0.053 0.031 0.013 0.000 -0.008	0.000 0.028 0.046 0.052 0.047 0.038 0.027 0.016 0.008	0.000 0.007 0.013 0.018 0.021 0.021 0.021 0.019 0.016	0.000 0.003 0.005 0.006 0.010 0.011 0.012 0.012	0.000 0.001 0.002 0.002 0.003 0.004 0.004 0.005 0.005	0.000 0.000 0.001 0.001 0.001 0.002 0.002 0.002 0.002	0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.001
	1,8 2 3 4 5 6 8	C.CCC C.CCC C.CCC C.CCC C.CCC C.CCC	- C. C15 - C. C12 - C. CC5 - C. CC5 - C. CC1 - C. CC1 - C. CC1	-0.027 -C.022 -0.009 -0.004 -C.002 -0.001	-0.035 -0.029 -0.013 -0.006 -0.004 -0.004 -0.002	-0.038 -0.033 -0.016 -0.008 -0.004 -0.003 -0.001	-0.036 -0.032 -0.017 -0.009 -0.005 -0.003 -0.003	-0.030 -0.028 -0.018 -0.010 -0.004 -0.004	-0.013 -0.016 -0.016 -0.011 -0.005 -0.005	0.001 -0.004 -0.011 -0.010 -0.007 -0.005 -0.003	0.013 0.010 -0.001 -0.005 -0.005 -0.004 -0.003	0.011 0.010 0.004 -0.002 -0.002 -0.003	0.005 0.005 0.005 0.003 0.001 -0.000	0.002 0.003 0.003 0.003 0.002 0.001	0.001 0.001 0.002 0.002 0.002 0.002 0.001
XX	10 20 40 100	C.CCC C.CCC C.CCC C.CCC C.CCC	- C.CCC - C.CCC - C.CCC - C.CCC C.CCC	-0.000 -0.000 -0.000 0.000	-0.000 -0.000 -0.000 -0.000	-0.001 -0.000 -0.000 -0.000	-0.001 -0.000 -0.000 -0.000	-0.001 -0.000 -0.000 -0.000	-0.001 -0.000 -0.000 -0.000	-0.001 -0.000 -0.000 -0.000	-0.002 -0.000 -0.000 -0.000	-0.002 -0.000 -0.000 -0.000	-0.001 -0.000 -0.000 -0.000	- 0. 001 - 0. 000 - 0. 000 - 0. 000	-0.000 -0.000 -0.000 -0.000

1. J. H. M. W.

Section 6-4

m ₃	P	IKXKC	XK	*****	<u> </u>		, <i>x</i>	a	кж	×		к ж	XK	4XX	
	3	0	0,2	0,4	0,6	0,8	1,0	1,2	1,6	2	3	4	6	8	10
Ň	0 0,2 0,4 0,6 0,8 1,0 1.2	-1.273 -C.773 -C.452 -C.261 -C.153 -C.C52 -C.C57	-1.222 -C.729 -C.425 -C.248 -C.149 -C.149 -C.C92 -C.C58	-1.057 -0.595 -C.347 -0.215 -0.139 -C.092 -0.062	-C.744 -0.364 -C.236 -C.172 -C.127 -C.093 -C.068	-0.154 -3.062 -0.128 -0.132 -3.114 -0.092 -0.072	∞ 0.155 -0.042 -0.091 -0.096 -0.086 -0.072	0.559 0.268 0.046 -0.039 -0.067 -0.071 -0.065	0.220 0.183 0.106 0.039 -0.005 -0.028 -0.038	0.126 0.115 0.088 0.055 0.025 0.025 0.003 -0.012	0.051 0.049 0.045 0.038 0.030 0.022 0.014	0.028 0.027 0.026 0.024 0.021 0.018 0.015	0.012 0.012 0.012 0.011 0.011 0.010 0.010	0.007 C.007 0.007 0.006 C.006 0.006 0.006	0.034 0.004 0.034 0.004 0.004 0.004 0.004
z/a =	1,4 1,6 1,8 2 3	-C.C36 -C.C24 -C.C16 -C.C12 -C.C03	- C.C38 - C.C26 - C.C18 - C.C13 - C.C23	- C. 043 - C. 031 - 0. 022 - C. 016 - 0. 004	-0.050 -0.037 -0.028 -0.021 -0.006	-0.056 -0.043 -0.033 -0.026 -0.008	-0.059 -0.047 -0.038 -0.030 -0.010	-0.057 -).)48 -0.040 -0.033 -0.012	-0.041 -0.040 -0.036 -0.032 -0.016	-0.021 -0.025 -0.026 -0.026 -0.026 -0.016	0.007 0.001 -0.003 -0.007 -0.012	0.011 0.008 0.005 0.003 -0.005	0.008 0.008 0.007 0.006 0.001	C.006 C.005 O.005 O.004 C.003	0.004 0.004 0.003 0.073 0.002
Ť	4 5 8 10 20 40	- C.CC1 - C.CCC - C.CCC - C.CCC - C.CCC - C.CCC - C.CCC	-0.001 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	-0.0C2 -C.0C1 -0.0C0 -0.0C0 -0.0C0 -0.0C0 -0.000	-0.002 -0.001 -0.000 -0.000 -0.000 -0.000 -0.000	-0.003 -0.001 -0.001 -0.000 -0.000 -0.000 -0.000	-0.004 -0.002 -0.001 -0.000 -0.000 -0.000 -0.000	-0.005 -0.002 -0.001 -0.000 -0.000 -0.000 -0.000 -0.000	-0.007 -0.004 -0.002 -0.001 -0.000 -0.000 -0.000 -0.000	-0.009 -0.005 -0.003 -0.001 -0.000 -0.000 -0.000	-0.009 -0.006 -0.004 -0.002 -0.001 -0.000 -0.000	-0.007 -0.006 -0.004 -0.002 -0.001 -0.000 -0.000	-0.001 -0.003 -0.002 -0.002 -0.002 -0.000 -0.000	0.001 -0.000 -0.001 -0.002 -0.001 -0.000 -0.000	$\begin{array}{c} 0.001 \\ 0.001 \\ -0.000 \\ -0.001 \\ -0.001 \\ -0.000 \\ -0.000 \end{array}$

Chapitre 6

6-4

324

EXPRESSION DES COEFFICIENTS k et m

$$\begin{split} & k_{0} = \frac{1}{\pi} \left[\operatorname{Arctg} \frac{a+x}{z} + \operatorname{Arc} tg \frac{a-x}{z} + \frac{2 \operatorname{az}(a^{2}+z^{2}-x^{2})}{(x^{2}+z^{2}-a^{2})^{2}+4 \operatorname{a}^{2}z^{2}} \right] \\ & k_{1} = \frac{1}{\pi} \frac{4 \operatorname{axz}^{2}}{(x^{2}+z^{2}-a^{2})^{2}+4 \operatorname{a}^{2}z^{2}} \\ & k_{2} = \frac{1}{\pi} \left[\operatorname{Arctg} \frac{a+x}{z} + \operatorname{Arc} tg \frac{a-x}{z} - \frac{2 \operatorname{az}(a^{2}+z^{2}-x^{2})}{(x^{2}+z^{2}-a^{2})^{2}+4 \operatorname{a}^{2}z^{2}} \right] \\ & k_{3} = \frac{1}{\pi} \left[\operatorname{Log} \frac{(a+x)^{2}+z^{2}}{(a-x)^{2}+z^{2}} - \frac{4 \operatorname{axz}^{2}}{(x^{2}+z^{2}-a^{2})^{2}+4 \operatorname{a}^{2}z^{2}} \right] \\ & m_{0} = \frac{1}{\pi} \left[\frac{x}{a} \left(\operatorname{Arctg} \frac{a+x}{z} + \operatorname{Arc} tg \frac{a-x}{z} \right) - \frac{2 \operatorname{xz}(x^{2}+z^{2}-a^{2})}{(x^{2}+z^{2}-a^{2})^{2}+4 \operatorname{a}^{2}z^{2}} \right] \\ & m_{1} = \frac{1}{\pi} \left[-\frac{z}{a} \left(\operatorname{Arctg} \frac{a+x}{z} + \operatorname{Arc} tg \frac{a-x}{z} \right) + \frac{2 \operatorname{xz}(x^{2}+z^{2}-a^{2})^{2}+4 \operatorname{a}^{2}z^{2}}{(x^{2}+z^{2}-a^{2})^{2}+4 \operatorname{a}^{2}z^{2}} \right] \\ & m_{2} = \frac{1}{\pi} \left[\frac{x}{a} \left(\operatorname{Arctg} \frac{a+x}{z} + \operatorname{Arc} tg \frac{a-x}{z} \right) + \frac{2 \operatorname{xz}(x^{2}+z^{2}-a^{2})^{2}+4 \operatorname{a}^{2}z^{2}}{(x^{2}+z^{2}-a^{2})^{2}+4 \operatorname{a}^{2}z^{2}} \right] \\ & m_{2} = \frac{1}{\pi} \left[\frac{x}{a} \left(\operatorname{Arctg} \frac{a+x}{z} + \operatorname{Arc} tg \frac{a-x}{z} \right) + \frac{2 \operatorname{xz}(x^{2}+z^{2}-a^{2})^{2}+4 \operatorname{a}^{2}z^{2}}{(x^{2}+z^{2}-a^{2})^{2}+4 \operatorname{a}^{2}z^{2}} \right] \\ & m_{3} = \frac{1}{\pi} \left[\frac{3 z}{a} \left(\operatorname{Arctg} \frac{a+x}{z} + \operatorname{Arc} tg \frac{a-x}{z} \right) + \frac{x}{a} \operatorname{Log} \frac{(x+a)^{2}+z^{2}}{(x-a)^{2}+z^{2}} - \frac{2 \operatorname{z}^{2}(x^{2}+z^{2}-a^{2})^{2}+4 \operatorname{a}^{2}z^{2}}{(x-a)^{2}+z^{2}} \right] \end{split}$$

Section 6-4

BIBLIOGRAPHIE

Nous avons calculé nous-même l'expression analytique et les valeurs numériques des coefficients mais ceci n'a fait l'objet d'aucune publication. Signalons toutefois que le calcul de k_0 avait déjà été fait par Carothers [1]. Par ailleurs, certains calculs numériques partiels avaient été faits par Florin [2] et Jurgenson [3]. Enfin, la définition de la rotation moyenne a été donnée par Vogt [4].

REFERENCES

- [1] S.D. CAROTHERS, "Plane strain : the direct determination of stresses", Proc. Royal Society, A. 97 (1920), 110.
- [2] V.A. FLORIN, "Osnovi Mekaniki Gruntow", Vol. 1 (Moscou, 1959), 340-341.
- [3] L. JURGENSON, "The application of theories of elasticity and plasticity to foundations problems", <u>Boston Society Civil Engineers Contributions to</u> Soil Mechanics (1925-1940), 148-183.
- [4] F. VOGT, "Uber die Berechnung der Fundament de formation", <u>Av hand linger utgit</u> <u>av Det Norske Videnkaps</u>, Akademi Math. Naturv Klasse (Oslo 1925), p. 8, 9 et 24.

SECTION 6-5

FONDATION DE GRANDE LONGUEUR EXERÇANT UNE CHARGE NORMALE UNIFORME

(semelles filantes, radiers longs, remblais routiers) sur une couche de sol homogène d'épaisseur finie

SOMMAIRE

- Définition du sol
- Définition de la charge
- Calcul direct du tassement
- Calcul du tassement moyen
- Calcul des contraintes
- Tables et Graphiques
- Expression des coefficients
- Bibliographie

Chapitre 6

DEFINITION DU SOL

La <u>couche de sol homogène</u>, d'épaisseur H, repose sur un <u>substratum indéfor-</u> <u>mable</u> auquel elle adhère parfaitement. Si cette adhérence n'est pas parfaite les contraintes σ_x et τ_{zx} au voisinage de la surface de contact seront moins fortes que celles données ici, le tassement sera plus important et la contrainte σ_z sera peu affectée. Si la couche de sol n'est pas parfaitement homogène, les contraintes seront peu affectées tandis que le calcul direct du tassement ne fournira qu'un ordre de grandeur. Encore faut-il que l'on ait pu estimer une valeur moyenne des propriétés de sol pour toute la couche.

DEFINITION DE LA CHARGE

La fondation de longueur infinie et de largeur 2a exerce sur le sol une contrainte uniformément répartie, p (Fig. 1).

FIG. 1. - Définition du sol et de la charge.

CALCUL DIRECT DU TASSEMENT

On peut utiliser indistinctement deux types de formules. Celles du second type sont plus commodes dans le cas d'une couche de faible épaisseur relative (β petit) et celle du premier type dans le cas d'une fondation de faible largeur relative (β ' petit).

Dans les formules qui suivent, on a : H : épaisseur de la couche de sol, 2 a : largeur de la fondation, p : contrainte normale uniforme, E : module d'Young du sol. \boldsymbol{p}_{H} : coefficient sans dimension dépendant de ν et $\boldsymbol{\beta},$ v : coefficient de Poisson du sol. β : épaisseur relative de la couche, $p_{\rm H}^{\,\prime}$: coefficient sans dimensions dépendant de ν et $\beta^{\,\prime}\,,$ β' : largeur relative de la fondation. - Formules du premier type : • Tassement du bord de la charge (|x| = a) : $w = \frac{2 a p}{E} p_H$ avec $\beta = \frac{H}{2 a}$ (1)• Tassement du centre de la charge (x = 0) : $w = \frac{2 a p}{E} p_H$ avec $\beta = \frac{H}{a}$ (2)• Tassement d'un point d'abscisse x : $w = \frac{p}{E} \left[(a + x) p_{H1} + (a - x) p_{H2} \right]$ (3) $\beta = \frac{H}{|a + x|}$ pour p_{H1} avec : $\beta = \frac{H}{|a - x|}$ pour p_{H2} - Formules du deuxième type : · Tassement du bord de la charge : $w = \frac{pH}{r} p'_{H}$ avec $\beta' = \frac{2a}{H}$ (4)• Tassement du centre de la charge : $w = \frac{2 pH}{E} p'_{H}$ avec $\beta' = \frac{a}{H}$ (5)

331

• Tassement du point d'abscisse x :

(6)
$$w = \frac{pH}{E} \left[\frac{a + x}{|a + x|} p_{H1}^{\dagger} + \frac{a - x}{|a - x|} p_{H2}^{\dagger} \right]$$

avec :

 $\beta' = \frac{|a + x|}{H} \quad \text{pour } p'_{H1}$ $\beta' = \frac{|a - x|}{H} \quad \text{pour } p'_{H2}$

Les valeurs numériques des coefficients sans dimensions p_H et p'_H sont données sous forme de tables et de graphiques.

Exemple 1 :

Considérons un remblai de grande longueur, de hauteur h = 4 m (13 ft), de largeur de plate-forme 10 m (33 ft) et de pentes latérales 2/1, reposant sur une couche de 45 m (147 ft) d'épaisseur d'un sol de module E = 40 bars (58 p.s.i.) et de coefficient de Poisson, v = 0,3 (Fig. 2). Quel tassement final peut-on estimer, sachant que la masse volumique du sol en remblai est : $p = 2 070 \text{ kg/cm}^3 = 129 \text{ lb/}$ cu. ft ?

On peut estimer avec une bonne approximation que ce remblai exerce sur le sol une contrainte normale uniforme sur une largeur BB' = 2 a = 18 m (59 ft) de valeur :

 $p = \rho gh = 2 070 \times 9,81 \times 4 = 80 000 Pascals = 0,8 bar = 129 \times 13$

= 1 675 lb/sg. ft = 11,6 p.s.i.

Calculons le tassement sous le centre et le bord de cette charge (c'est-àdire sous la mi-pente du talus réel).

FIG. 2. - Définition du remblai de l'exemple 1.

A titre d'exercice, employons les deux types de formules : - tassement au centre : formule (2) ou (5) : $\beta = \frac{H}{a} = 5$ ou $\beta' = \frac{a}{H} = 0,2.$ Pour v = 0,3, on lit sur les tables : $p_H = 1,212$; $p'_H = 0,242$, d'où : $w = \frac{0.8 \times 18}{40} \times 1,212 = \frac{2 \times 0.8 \times 45}{40} \times 0,242 = 0,44$ m $= \frac{11.6 \times 59}{58} \times 1,212 = \frac{2 \times 11.6 \times 147}{58} \times 0,242 = 1$ ft 5 inches - tassement du bord : formule (1) ou (4) : $\beta = \frac{H}{2a} = 2,5$ ou $\beta' = \frac{2a}{H} = 0,4$, pour v = 0,3, on lit dans les tables : $p_H = 0,826$; $p'_H = 0,330$, d'où : $w = \frac{0.8 \times 18}{40} \times 0,826 = \frac{0.8 \times 45}{40} \times 0,330 = 0,30$ m $= \frac{11.6 \times 59}{58} \times 0,826 = \frac{11.6 \times 147}{58} \times 0,330 = 1$ ft.

CALCUL DU TASSEMENT MOYEN

La moyenne du tassement de tous les points de la surface du sol situés au contact de la charge uniformément répartie s'écrit (Fig. 3) :

(7)
$$w_m = \frac{2 a p}{E} p_{Hm}$$

ou bien :

(8)
$$w_m = \frac{pH}{E} p'_{Hm}$$

FIG. 3. — Notion de tassement moyen. Le tassement de la charge uniforme de longueur infinie est représenté par la courbe en trait plein. Le tassement moyen w_m est tel que 2 aw_m soit égal à la surface hachurée.

avec :

- 2 a : largeur de la fondation,
 - p : charge normale uniforme,
 - E : module d'Young du sol,
 - H : épaisseur de la couche de sol,
- p_{Hm} et p'_{Hm} : coefficients sans dimensions dont les valeurs numériques sont données sous forme de tables et graphiques en fonction de v,
 - v : coefficient de Poisson du sol.

On peut utiliser indistinctement ces deux formules. Toutefois, la première convient mieux si la couche est relativement épaisse et la seconde si elle est relativement mince.

On montre que le "tassement moyen" est très voisin du tassement qu'aurait sur le même sol une fondation rigide de même largeur et supportant la même charge totale.

Exemple 2 :

Considérons une fondation de 0,9 m (3 ft) de largeur, supportant une charge linéaire de 150 000 newtons/m (15,3 t/m ou 10 500 lb/ft) et reposant sur une couche de sol de 4,5 m (15 ft) d'épaisseur. Nous nous proposons de calculer son tassement instantané : le coefficient de Poisson vaut alors 0,5 et un essai non drainé a donné un module E = 60 bars (125 000 lb/sq. ft).

Calculons d'abord la charge moyenne :

$$p = \frac{150\ 000}{0.9} = 167\ 000\ \text{pascals} = 1,67\ \text{bar} = \frac{15.3}{0.9} = 17\ \text{t/m} = 1,7\ \text{kg/cm}^2$$

= $\frac{10\ 500}{3} = 3\ 500\ \text{lb/sq}$. ft.
On lit ensuite dans les tables :
 $p_{\text{Hm}} = 1,021$ pour $v = 0,5$ et H/2a = 5.
On en déduit la valeur du tassement en utilisant la formule (7) :
 $w_{\text{m}} = \frac{0.9 \times 1.67}{60} \times 1,021 = 0,025\ \text{m} = 2,5\ \text{cm},$
ou bien :
 $w_{\text{m}} = \frac{3 \times 3\ 500}{125\ 000} \times 1,021 = 0,085\ \text{ft} = 1\ \text{inch}.$

On peut également utiliser la formule (8). Pour cela, les tables donnent :

$$p'_{Hm} = 0,204 \text{ pour } 2 \text{ a/H} = 0,2.$$

On en déduit la valeur du tassement :
 $w_m = \frac{4,5 \times 1,67}{60} \times 0,204 = 0,025 \text{ m}$

$$=\frac{15 \times 3500}{125000} \times 0,204 = 0,085 \text{ ft}$$

CALCUL DES CONTRAINTES

Dans les formules suivantes, on a :

- p : charge normale uniforme exercée sur la fondation,
- H : épaisseur de la couche de sol,
- 2 a : largeur de la fondation,
 - v : coefficient de Poisson du sol,
- x, z : coordonnées cartésiennes du point où l'on calcule les contraintes,

 k_{H0} , k_{H1} et k_{H2} : coefficients sans dimensions dépendant de β , β : épaisseur relative.

Les contraintes sont données par :

- Point situé à la verticale du bord de la charge (|x| = a) :

 $(9) \begin{cases} \sigma_{z} = p k_{H0} \\ \tau_{zx} = p k_{H1} \\ \sigma_{x} = p k_{H2} \end{cases} \text{ avec } \beta = \frac{H}{2 a} \\ \sigma_{x} = p k_{H2} \end{cases}$ - Point situé à la verticale du centre de la charge (x = 0) : $(10) \begin{cases} \sigma_{z} = 2 p k_{H0} \\ \tau_{zx} = 0 \\ \sigma_{x} = 2 p k_{H2} \end{cases}$ - Point d'abscisse x quelconque : $(11) \begin{cases} \sigma_{z} = p \left[k_{H0}^{(1)} \pm k_{H0}^{(2)}\right] \\ \tau_{zx} = p \left[k_{H1}^{(1)} - k_{H1}^{(2)}\right] \\ \sigma_{x} = p \left[k_{H2}^{(1)} \pm k_{H2}^{(2)}\right] \end{cases}$

GIROUD. - Tables pour le calcul des fondations. Tome 2

23

avec	:	+ si	x <	a	
		- si	x > :	a	
et :		$\beta = \int a$	H + x	pour	(1).
		$\beta = \frac{1}{a}$	$\frac{H}{-x}$	pour	(2).
	-	En tout	point	:	
()	<	σ _y = ν	(σ _z +	σ_x)	
(12)	2	$\tau_{xy} = \tau$	yz = 0	•	

Les coefficients sans dimensions k_{H0} , k_{H1} et k_{H2} sont donnés sous forme de tables et graphiques, uniquement pour v = 0,3. Cependant, σ_z ne variant qu'extrêmement peu avec le coefficient de Poisson, on pourra utiliser le coefficient k_{H0} pour toute valeur de v. De même, τ_{zx} dépend assez peu de v et le coefficient k_{H1} pourra être utilisé avec une bonne approximation pour toute valeur de v. En revanche σ_x étant assez sensible aux variations du coefficient de Poisson, l'emploi du coefficient k_{H2} sera limité au cas v = 0,3.

Exemple 3 :

6-5

Reprenons le remblai de l'exemple 1. Quelle est la contrainte $\sigma_{\rm g}$ sous le centre à 27 m (89 ft) de profondeur ?

```
Calculons d'abord \beta:

\beta = \frac{H}{a} = \frac{45}{9} = \frac{147}{29,5} = 5.
Calculons ensuite :

\frac{z}{H} = \frac{27}{45} = \frac{89}{147} = 0,6.
On lit alors dans les tables : k_{HO} = 0,216.
Par ailleurs on sait, d'après l'exemple 1, que :

p = 0,8 \text{ bar} = 1.675 \text{ lb/sq. ft.}
On peut alors appliquer la formule (10) :

\sigma_z = 2 \times 0,8 \times 0,216 = 0,35 \text{ bar},
\sigma_z = 2 \times 1.675 \times 0,216 = 720 \text{ lb/sq. ft.}
```

TABLES ET GRAPHIQUES

- Calcul o	lu tassement		
(Coefficients : p_H et p'_H	p.	338-341
- Calcul o	lu tassement moyen		
(Coefficients : p_{Hm} et p'_{Hm}	p.	342-345
- Calcul o	les contraintes		
(Coefficients : k_{H0} , k_{H1} , k_{H2}	p.	346-351

		Coeffic	ient de	POISS	on v			Coefficient de POISSON <i>V</i>					
β	0	0,1	0,2	0,3	0,4	0,5	β	· 0	0,1	0,2	0,3	0,4	0,5
0	0	0	0	0	0	0	1,7	0,777	0,753	0,706	0,626	0,501	0,317
0,05	0,025	0,024	0,023	0,019	0,012	0,000	1,8	0,809	0,785	0,738	0,655	0,527	0,339
0,1	0,05	0,049	0,045	0,037	0,023	0,000	1,9	0,840	0,817	0,768	0,682	0,551	0,360
0,15	0,075	0,073	0,068	0,056	0,035	0,000	2,0	0,870	0,848	0,796	0,709	0,575	0,381
0,2	0,100	0,098	0,090	0,074	0,047	0,001	2,5	1,002	0,978	0,925	0,826	0,682	0,468
0,25	0,125	0,122	0,113	0,093	0,059	0,004	3,0	1,112	1,085	1,029	0,926	0,773	0,548
0,3	0,150	0,147	0,135	0,112	0,072	0,007	3,5	1,208	1,180	1,115	1,012	0,852	0,619
0,35	0,175	0,171	0,158	0,131	0,085	0,011	4,0	1,289	1,263	1,197	1,086	0,920	0,683
0,4	0,201	0,196	0,181	0,150	0,099	0,017	5,0	1,429	1,400	1,330	1,212	1,036	0,786
0,45	0,227	0,220	0,204	0,169	0,113	0,023	6,0	1,545	1,518	1,445	1,318	1,133	0,870
0,5	0,253	0,245	0,227	0,189	0,127	0,031	7,0	1,641	1,615	1,540	1,405	1,213	0,943
0,55	0,279	0,269	0,250	0,209	0,143	0,039	8,0	1,722	1,699	1,621	1,479	1,281	1,007
0,6	0,305	0,294	0,272	0,229	0,158	0,049	9,0	1,800	1,770	1,689	1,549	1,347	1,062
0,65	0,331	0,318	0,295	0,249	0,174	0,059	10,0	1,866	1,834	1,750	1,609	1,402	1,112
0,7	0,357	0,342	0,318	0,269	0,191	0,070	11,0	1,926	1,890	1,805	1,663	1,452	1,157
0,75	0,382	0,367	0,341	0,290	0,207	0,081	12,0	1,978	1,942	1,857	1,712	1,500	1,198
0,8	0,407	0,391	0,364	0,310	0,224	0,093	13,0	2,026	1,991	1,906	1,759	1,544	1,236
0,85	0,432	0,415	0,386	0,330	0,241	0,106	14,0	2,072	2,038	1,952	1,802	1,585	1,271
0,9	0,456	0,439	0,408	0,350	0,258	0,118	15,0	2,115	2,081	1,995	1,843	1,623	1,304
0,95	0,480	0,464	0,430	0,370	0,275	0,131	20,0	2,307	2,269	2,173	2,010	1,772	1,442
1,0	0,503	0,488	0,452	0,390	0,291	0,144	25,0	2,449	2,410	2,309	2,139	1,891	1,548
1,1	0,548	0,530	0,496	0,428	0,324	0,170	30,0	2,565	2,524	2,420	2,244	1,988	1,635
1,2	0,591	0,570	0,535	0,464	0,356	0,196	40,0	2,748	2,705	2,596	2,411	2,142	1,772
1,3	0,632	0,611	0,574	0,499	0,387	0,222	50,0	2,890	2,847	2,732	2,540	2,261	1,879
1,4	0,671	0,648	0,610	0,533	0,417	0,246	100,0	3,331	3,284	3,156	2,942	2,632	2,210
1,5	0,708	0,685	0,643	0,566	0,446	0,270	1000,0	4,797	4,735	4,563	4,276	3,863	3,309
1,6	0,743	0,720	0,676	0,597	0,474	0,294	∞	∞	œ	∞	∞	∞	∞

6-5

		Coeffi	cient d	le POISS	son, <i>v</i>	
β'	0	0,1	0,2	0,3	0,4	0,5
0	0	0	0	0	0	0
0,01	0,033	0,033	0,032	0,029	0,026	0,022
0,02	0,058	0,057	0,055	0,051	0,045	0,038
0,05	0,115	0,114	0,109	0,101	0,089	0,072
0,10	0,187	0,183	0,175	0,161	0,140	0,111
0,15	0,241	0,237	0,225	0,210	0,178	0,139
0,20	0,286	0,280	0,266	0,242	0,207	0,157
0,25	0,322	0,316	0,299	0,271	0,230	0,171
0,30	0,353	0,344	0,326	0,296	0,248	0,179
0,35	0,378	0,369	0,350	0,315	0,262	0,186
0,40	0,401	0,391	0,370	0,330	0,273	0,188
0,45	0,420	0,410	0,386	0,343	0,280	0,190
0,50	0,435	0,424	0,398	0,355	0,288	0,191
0,60	0,461	0,446	0,419	0,369	0,294	0,187
0,70	0,476	0,461	0,434	0,378	0,298	0,179
0,80	0,488	0,472	0,444	0,384	0,298	0,167
0,90	0,498	0,481	0,449	0,388	0,292	0,153
1,00	0,503	0,488	0,452	0,390	0,291	0,144
1,5	0,508	0,493	0,455	0,387	0,270	0,095
2,0	0,506	0,492	0,452	0,378	0,254	0,062
2,5	0,503	0,489	0,450	0,375	0,247	0,047
3	0,5	0,489	0,450	0,374	0,242	0,029
4	0,5	0,489	0,450	0,372	0,236	0,014
5	0,5	0,489	0,450	0,371	0,233	0,006
10	0,5	0,489	0,450	0,371	0,233	0
100	0,5	0,489	0,450	0,371	0,233	0
∞	0,5	0,489	0,450	0,371	0,233	0

p'_H

 $p_{_{Hm}}$

н	н			1	ט		
a	2 a	0	0.1	0.2	0.3	0.4	0.5
0	0	0	0	0	0	0	0
0.2	0.1	0.098	0.095	0.087	0.073	0.048	0.007
0.4	0.2	0.191	0.187	0.170	0.145	0.099	0.026
0.6	0.3	0.284	0.278	0.252	0.217	0.153	0.055
0.8	0.4	0.366	0.357	0.330	0.284	0.208	0.090
Т	0.5	0.446	0.433	0.403	0.349	0.260	0.129
1.2	0.6	0.520	0.505	0.471	0.413	0.312	0.167
1.4	0.7	0.588	0.569	0.532	0.471	0.364	0.209
1.6	0.8	0.651	0.628	0.595	0.525	0.411	0.248
1							
1.8	0.9	0.713	0.686	0.652	0.576	0.457	0.284
2	L	0.772	0.741	0.707	0.624	0.501	0.320
2.2	1.1	0.821	0.788	0.756	0.670	0.540	0.353
1							
2.4	1.2	0.869	0.838	0.801	0.711	0.579	0.386
2.6	1.3	0.912	0.882	0.843	0.752	0.615	0.418
2.8	1.4	0.956	0.929	0.883	0.791	0.648	0.449
3	1.5	0.998	0.974	0.921	0.825	0.680	0.476
4	2	1.170	1.144	1.083	0.982	0.823	0.597
5	2.5	1.308	1.280	1.213	1.104	0.935	0.695
6	3	1.416	1.388	1.319	1.206	1.029	0.778
8	4	1.591	1.563	1.493	1.370	1.180	0.914
10	5	1.743	1.715	1.635	1.498	1.301	1.021
20	10	2.177	2.141	2.050	1.894	1.666	1.346
40	20	2.612	2.569	2.468	2.293	2.034	1.674
8	8	8	8	8	8	8	8

a	20			1	V		-
H	$\frac{L}{H}$	0	0.1	0.2	0.3	0.4	0.5
0	0	0	0	0	0	0	0
0.05	0.1	0.218	0.214	0.205	0.189	0.167	0.135
0.1	0.2	0.349	0.343	0.327	0.299	0.260	0.204
0.15	0,3	0.450	0.443	0.415	0.384	0.329	0.250
0.2	0.4	0.522	0.512	0.485	0.442	0.374	0.278
0.25	0.5	0.585	0.572	0.541	0.491	0.412	0.298
0.3	0.6	0.635	0.619	0.588.	0.530	0.440	0.310
0.35	0.7	0.675	0.655	0.625	0.563	0.460	0.318
0.4	0.8	0.712	0.689	0.657	0.589	0.478	0.321
0.45	0.9	0.744	0.717	0.683	0.608	0.492	0.322
0.5	1.0	0.772	0.741	0.707	0.624	0.501	0.320
0.75	1.5	0.855	0.820	0.771	0.677	0.522	0.293
1	2	0.892	0.867	0.806	0.698	0.522	0.258
1.25	2.5	0.916	0.892	0.825	0.709	0.515	0.225
1.5	3	0.929	0.906	0.837	0.715	0.509	0.198
2	4	0.946	0.923	0.849	0.722	0.500	0.157
2.5	5	0.955	0.933	0.855	0.726	0.494	0.130
5	10	0.976	0.954	0.874	0.734	0.482	0.070
10	20	0.986	0.964	0.884	0.739	0.474	0.039
25	50	0.995	0.973	0.893	0.741	0.469	0.015
8	ω	1	0.978	0.900	0.743	0.467	0

p'_{Hm}

346

1												-	and the second second	1000		and the second second	
ZHB	0,5	1	1,25	1,5	1,75	2	2,25	2,5	2,75	3	3,5	4	5	6	7	10	20
0	0,500	0,500	0,500	0,500	0,500	0,500	0,500	0,500	0,500	0,500	0,500	0,500	0,500	0,500	0,500	0,500	0,500
0,05	0,503	0,502	0,5015	0,501	0,5005	0,499	0,4985	0,498	0,4975	0,497	0,4965	0,496	0,495	0,494	0,494	0,482	0,407
0,1	0,504	0,5025	0,502	0,5015	0,500	0,498	0,497	0,496	0,4955	0,495	0,492	0,488	0,477	0,472	0,462	0,402	0,275
0,15	0,5035	0,502	0,5015	0,501	0,499	0,497	0,495	0,492	0,490	0,486	0,477	0,472	0,447	0,420	0,397	0,325	0,194
0,2	0,503	0,5015	0,501	0,500	0,498	0,495	0,490	0,485	0,480	0,472	0,460	0,450	0,407	0,380	0,337	0,267	0,152
0,25	0,5025	0,501	0,5005	0,499	0,496	0,489	0,481	0,473	0,466	0,453	0,437	0,417	0,369	0,332	0,295	0,225	0,122
0,3	0,502	0,5005	0,500	0,497	0,492	0,481	0,470	0,460	0,449	0,430	0,410	0,378	0,333	0,295	0,260	0,195	0,103
0,35	0,502	0,500	0,499	0,495	0,487	0,469	0,457	0,442	0,429	0,407	0,382	0,347	0,303	0,265	0,235	0,170	0,089
0,4	0,502	0,499	0,498	0,491	0,480	0,457	0,442	0,425	0,410	0,385	0,358	0,322	0,278	0,240	0,216	0,154	0,080
0,45	0,5015	0,498	0,4965	0,487	0,473	0,445	0,428	0,409	0,392	0,367	0,338	0,301	0,256	0,220	0,199	0,143	0,072
0,5	0,501	0,500	0,495	0,482	0,466	0,433	0,414	0,394	0,374	0,350	0,318	0,285	0,240	0,205	0,185	0,132	0,066
0,55	0,5005	0,499	0,493	0,475	0,458	0,423	0,400	0,380	0,357	0,333	0,303	0,269	0,227	0,191	0,172	0,124	0,061
0,6	0,500	0,498	0,491	0,467	0,449	0,412	0,387	0,366	0,343	0,319	0,289	0,256	0,216	0,180	0,162	0,1175	0,058
0,65	0,500	0,497	0,487	0,460	0,440	0,401	0,375	0,354	0,331	0,308	0,277	0,245	0,205	0,170	0,153	0,112	0,055
0,7	0,499	0,495	0,481	0,453	0,430	0,389	0,3634	0,343	0,320	0,298	0,266	0,235	0,196	0,162	0,146	0,107	0,052
0,75	0,498	0,492	0,475	0,445	0,420	0,379	0,352	0,332	0,310	0,289	0,255	0,225	0,188	0,157	0,140	0,1045	0,051
0,8	0,497	0,489	0,469	0,437	0,410	0,369	0,342	0,321	0,301	0,280	0,246	0,217	0,181	0,151	0,135	0,1025	0,0505
0,85	0,496	0,485	0,462	0,428	0,400	0,360	0,333	0,312	0,292	0,271	0,238	0,210	0,175	0,147	0,130	0,101	0,050
0,9	0,495	0,481	0,454	0,419	0,390	0,350	0,325	0,303	0,283	0,262	0,230	0,204	0,171	0,145	0,1265	0,100	0,050
0,95	0,4945	0,476	0,446	0,410	0,380	0,340	0,317	0,295	0,275	0,256	0,223	0,200	0,167	0,1425	0,125	0,099	0,0495
1	0,494	0,471	0,438	0,400	0,370	0,332	0,308	0,288	0,269	0,251	0,217	0,197	0,165	0,141	0,124	0,099	0,049

ZAB	0,5	0,75	1	1,25	1,5	1,75	2	2,25	2,5	2 ,75	3	3,5	4	5	6	7	10
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0,05	0,234	0,240	0,246	0,252	0,261	0,267	0,272	0,280	0,280	0,282	0,284	0,288	0,289	0,284	0,278	0,269	0,234
0,1	0,274	0,276	0,277	0,278	0,277	0,276	0,276	0,276	0,275	0,275	0,275	0,265	0,259	0,243	0,226	0,204	0,126
0,15	0,266	0,267	0,268	0,268	0,267	0,266	0,264	0,262	0,259	0,256	0,252	0,227	0,219	0,194	0,172	0,149	0,076
0,2	0,255	0,256	0,256	0,257	0,255	0,251	0,247	0,242	0,234	0,227	0,221	0,191	0,178	0,148	0,127	0,108	0,052
0,25	0,240	0,241	0,244	0,243	0,240	0,234	0,237	0,217	0,207	0,197	0,191	0,156	0,143	0,112	0,093	0,077	0,037
0,3	0,227	0,228	0,230	0,228	0,224	0,216	0,206	0,193	0,182	0,171	0,161	0,131	0,116	0,086	0,072	0,060	0,027
0,35	0,212	0,214	0,216	0,213	0,207	0,198	0,185	0,169	0,158	0,147	0,139	0,109	0,094	0,069	0,058	0,047	0,019
0,4	0,200	0,202	0,204	0,198	0,190	0,180	0,164	0,149	0,143	0,136	0,125	0,091	0,077	0,055	0,046	0,037	0,014
0,45	0,190	0,190	0,189	0,184	0,173	0,162	0,146	0,129	0,117	0,107	0,099	0,076	0,063	0,044	0,036	0,029	0,011
0,5	0,181	0,179	0,178	0,170	0,157	0,146	0,129	0,111	0,101	0,091	0,084	0,065	0,052	0,035	0,028	0,023	0,009
0,55	0,174	0,171	0,167	0,158	0,143	0,131	0,114	0,096	0,087	0,077	0,071	0,054	0,043	0,029	0,023	0,019	0,007
0,6	0,168	0,163	0,155	0,145	0,130	0,118	0,102	0,084	0,075	0,066	0,060	0,045	0,035	0,023	0,019	0,015	0,005
0,65	0,164	0,157	0,146	0,134	0,119	0,105	0,093	0,082	0,070	0,057	0,051	0,038	0,029	0,017	0,015	0,013	0,004
0,7	0,162	0,153	0,139	0,125	0,109	0, 095	0,080	0,065	0,057	0,049	0,044	0,032	0,023	0,013	0,012	0,010	0,003
0,75	0,162	0,151	0,133	0,118	0,101	0,086	0,071	0,057	0,051	0,044	0,037	0,027	0,019	0,011	0,009	0,007	0,0025
0,8	0,163	0,150	0,130	0,112	0,094	0,080	0,065	0,051	0,045	0,038	0,032	0,024	0,017	0,010	0,008	0,006	0,002
0,85	0,169	0,153	0,129	0,110	0,088	0,075	0,061	0,048	0,042	0,036	0,030	0,022	0,016	0,009	0,007	0,005	0,0015
0,9	0,178	0,160	0,132	0,114	0,092	0,075	0,061	0,048	0,042	0,036	0,029	0,022	0,015	0,009	0,007	0,005	0,0015
0,95	0,193	0,171	0,140	0,119	0,097	0,077	0,062	0,049	0,043	0,037	0,029	0,023	0,015	0,009	0,007	0,005	0,0015
1	0,209	0,184	0,163	0,130	0,106	0,083	0,065	0,050	0,044	0,038	0,030	0,023	0,016	0,007	0,005	0,006	0,0015

Chapitre 6

Section 6-5

349

ŗ

350

GIROUD. - Tables pour le calcul des fondations

	β	0.5	0.75	1	125	1.5	1.75	2	2.5	3	3.5	4	5	6	7	10
2/H	\sim	0,5	0,15		1,20	1,0	1,10	-	-,0		0,0				1	
0	2	0,500	0,500	0,500	0,500	0,500	0,500	0,500	0,500	0,500	0,500	0,500	0,500	0,500	0,500	0,500
0,	05	0,195	0,210	0,221	0,237	0,252	0,272	0,280	0,288	0,291	0,293	0,293	0,265	0,255	0,251	0,195
0,	1	0,188	0,192	0,198	0,212	0,222	0,235	0,234	0,224	0,210	0,215	0,190	0,102	0,139	0,109	0,020
0	15	0.187	0.183	0.188	0.194	0,199	0.200	0,197	0,178	0,162	0,147	0,121	0,091	0,064	0,032	0,006
0.	2	0,188	0,176	0,178	0,177	0,176	0,168	0,159	0,133	0,111	0,091	0,074	0,048	0,029	0,004	0,0005
0,	25	0,189	0,174	0,168	0,162	0,154	0,140	0,128	0,097	0,073	0,054	0,040	0,025	0,014	0,0015	-0,001
	_				-					0.017	0.000	0.001			0.0005	0.0045
0,	3	0,190	0,173	0,160	0,147	0,134	0,119	0,103	0,070	0,047	0,033	0,021	0,011	0,006	0,0005	-0,0015
0,	35	0,191	0,172	0,153	0,130	0,110	0,101	0,084	0,031	0,031	0,020	0,012	0,005	0,003	0,0005	
0,	4	0,195	0,171	0,147	0,120	0,105	0,000	0,009	0,039	0,021	0,015	0,000	0,0025	0,001	-0,0005	
0.	45	0,194	0,170	0,140	0,118	0,093	0,074	0,059	0,033	0,017	0,011	0,005	0,0015	0,000	-0,0005	
0,	5	0,195	0,169	0,136	0,113	0,084	0,066	0,053	0,030	0,016	0,009	0,004	0,0025	0,001	0,000	
0,	55	0,196	0,169	0,134	0,109	0,078	0,061	0,049	0,030	0,017	0,010	0,006	0,005	0,004	0,002	
	6		0 170	0 105	0.100	0.075	0.0/0	0.040	0.020	0.020	0.012	0.000	0.0075	0.007	0.004	
1 .	65	0,198	0,170	0,135	0,100	0,075	0,060	0,049	0,032	0,020	0,015	0,008	0,0075	0,007	0,004	
	7	0,200	0,177	0,138	0,107	0.082	0,067	0,051	0,030	0,023	0.022	0.015	0,010	0,009	0,000	
	. 1	0,202	0,177	0,141	0,111	0,002	0,007	0,000	0,010	0,027	0,022	0,015	0,011	0,010	0,010	
0,	75	0,203	0,180	0,146	0,119	0,0905	0,075	0,064	0,047	0,034	0,029	0,021	0,020	0,019	0,014	
0,	8	0,204	0,183	0,154	0,128	0,102	0,087	0,075	0,057	0,043	0,036	0,028	0,027	0,022	0,018	
0,	85	0,206	0,189	0,162	0,138	0,116	0,100	0,088	0,070	0,057	0,048	0,037	0,033	0,028	0,024	
	。[0.000	0.104	0 172	0 152	0 122	0 115	0 102	0.086	0.072	0.062	0.040	0.042	0.024	0.020	
0,	95	0,208	0,194	0,1/3	0,152	0,132	0,113	0,103	0,080	0,072	0,083	0,049	0,042	0,034	0,029	
1 i		0.214	0,200	0,195	0,186	0,147	0,153	0,143	0,125	0.111	0,103	0,080	0.063	0.051	0.043	

6-5

24

351

EXPRESSION DES COEFFICIENTS

$$\begin{split} p_{\rm H} &= 2 \, \frac{\left(1 - \nu^2\right)}{\pi} \, \beta \int_0^\infty \frac{\left(3 - 4 \, \nu\right) \, \operatorname{cht} \, \operatorname{sht} - t}{\left[\left(3 - 4 \, \nu\right) \, \operatorname{ch}^2 \, t + \left(1 - 2 \, \nu\right)^2 \, + t^2\right] t^2} \, \sin \frac{t}{\beta} \, \mathrm{dt} \\ p_{\rm H}^{\, \prime} &= \frac{p_{\rm H}}{\beta} = \beta^{\prime} \, p_{\rm H} \qquad \operatorname{avec} \beta^{\prime} = 1/\beta \\ \operatorname{Si} \beta \neq 0 \, \left(\operatorname{ou} \beta^{\prime} \neq \infty\right) \, : \\ p_{\rm H}^{\, \prime} &+ \frac{\left(1 + \nu\right)\left(1 - 2 \, \nu\right)}{2\left(1 - \nu\right)} \, \beta \\ p_{\rm H}^{\, \prime} &+ \frac{\left(1 + \nu\right)\left(1 - 2 \, \nu\right)}{2\left(1 - \nu\right)} \\ \operatorname{Si} \beta \neq \infty \, \left(\operatorname{on} \beta^{\prime} \neq 0\right) \, : \\ p_{\rm H}^{\, \prime} &\neq \infty \, \left(\operatorname{on} \beta^{\prime} \neq 0\right) \, : \end{split}$$

Les coefficients $k_{H0}^{},\,k_{H1}^{}$ et $k_{H2}^{}$ ont été calculés numériquement, ainsi que $p_{Hm}^{}$ et p_{Hm}^{\prime} dont les limites sont :

Si H/a + 0 :

$$p_{Hm} \neq \frac{(1 + \nu)(1 - 2\nu)}{1 - \nu} \frac{H}{2a}$$

$$p_{Hm}' \Rightarrow \frac{(1 + \nu)(1 - 2\nu)}{1 - \nu}$$
Si H/a + ∞ :

$$p_{Hm} \neq \infty$$

$$p_{Hm}' \neq \infty$$

BIBLIOGRAPHIE

Les résultats contenus dans cette section sont le fruit de travaux que nous avons faits à Grenoble avec la collaboration de MM. Watissee et Rabatel et dont le détail a été publié [1]. Le seul résultat antérieur que nous ayons utilisé est dû à Holl [2]. Certains résultats partiels ont été donnés par quelques auteurs : on en trouvera une étude dans [1]. Enfin, signalons une étude analogue récente de Milovic et Tournier [3] faisant intervenir également des charges horizontales.

REFERENCES

- [1] J.P. GIROUD, H. WATISSEE et A. RABATEL, "Tassements et contraintes dans une couche de sol élastique supportant une charge uniformément répartie", <u>Bulletin</u> <u>de liaison des laboratoires routiers</u>, L.C.P.C., <u>48</u>, 925 (nov.1970), 97-124.
- [2] D.L. HOLL, "Plane strain distribution of stress in elastic media", <u>Iowa Enginee-</u> ring Exp. Station, Bulletin 148 (Ames, 1941).
- [3] D. MILOVIC et J.P. TOURNIER, "Contraintes et déplacements dans une couche d'épaisseur limitée, produits par une charge inclinée agissant sur une bande souple", <u>Travaux</u> (fév. 1971), 31-38.

SECTION 6-6

FONDATION DE GRANDE LONGUEUR EXERÇANT UNE CHARGE NORMALE UNIFORME

(semelles, remblais) sur un sol composé de deux couches

SOMMAIRE

- Définition du sol
- Définition de la charge
- Calcul des contraintes
- Tables
- Bibliographie

DEFINITION DU SOL

Le sol est composé de deux couches adhérant parfaitement l'une à l'autre. La couche supérieure, d'épaisseur H, a pour module d'Young, E_1 , et, pour coefficient de Poisson, v_1 . La couche inférieure, d'épaisseur infinie est caractérisée par E_2 et v_2 (Fig. 1).

DEFINITION DE LA CHARGE

Une pression uniforme p est répartie à la surface du sol sur une bande de largeur 2 a et de longueur infinie (Fig. 1).

FIG. 1. - Définition du sol et de la charge.

CALCUL DES CONTRAINTES

Les contraintes provoquées dans le sol par la charge sont données par :

$$\sigma_{z} = pk_{2H0},$$

$$\tau_{zx} = pk_{2H1},$$

$$\sigma_{x} = pk_{2H2},$$

avec :

$$k_{2H0}$$
, k_{2H1} et k_{2H2} : coefficients sans dimensions dont les valeurs en cer-
tains points sont données dans un tableau (uniquement
pour $E_1/E_2 = 50$ et $v_1 = v_2 = 0,25$).

		E _{1/}	Έ ₂ =	= 50			v ₁	$= \nu_2$	= 0	.25
		2 8	ч/н	= 1			2	a/H	= 2	
	X/a	0	0.5	1	2		0	0.5	1	2
	Z/H									
	0 1	1 0.205	1 0.201	0.5 0.193	0 0.161		1 0.380	1 0.372	0.5 0.366	0 0.326
K _{2H0}	1 10	0.205	0.201	0.193 0.051	0.161		0.380	0.372	0.366 0.102	0.326
	0 1	0 0	0 0.018	0 0.031	0 0.045		0 0	0 0.022	0 0.044	0 0.082
к _{2Н1}	1 10	0 0	0.01,8 0.001	0.031	0.045 0.004		0 0	0.022 0.002	0.044 0.004	0.082 0.009
k	0 1	4.593 -2.880	4.303 -2.726	3.603 -2.298	2.365 -1.298	۲	7.440 -4.579	7.292 -4.488	6.822 -4.142	5.291 -2.879
^r 2H2	1 10	0.008 -0.004	0.010 -0.004	0.016 -0.004	0.027 -0.004		0.031	0.032 0.030	0.035 0.031	0.046

Exemple :

Considérons une semelle filante exerçant sur le sol une charge normale uniformément répartie p = 1,55 bar (3 240 lb/sq. ft). Sa largeur est 1,2 m (4 ft) et l'épaisseur de la première couche de sol est 0,6 m (2 ft). La première couche est un remblai stabilisé et compacté alors que la couche inférieure est un terrain naturel de mauvaise qualité. Supposons que le rapport des deux modules soit de 50 et que le coefficient de Poisson soit le même dans les deux couches ($v_1 = v_2 = 0,25$). Quelle est la valeur de σ_2 à la surface de séparation des deux couches à la verticale du bord de la semelle ?

Les paramètres du problème sont :

2 a/H = 2, z/H = 1, x/a = 1.

On lit dans le tableau que le coefficient k_{2H0} vaut 0,366. D'où :

 $\sigma_{\pi} = 0,366 \times 1,55 = 0,568$ bar

= 0,366 × 3 240 = 1 190 lb/sg. ft.

Notons que si le milieu avait été homogène $(E_1 = E_2 \text{ et } v_1 = v_2)$, le coefficient k_{2HO} aurait été remplacé par le coefficient k_0 dont la valeur (1) est 0,480 pour x = a et z = a.

BIBLIOGRAPHIE

Les valeurs numériques des coefficients k_{2H0} , k_{2H1} et k_{2H2} ont été calculées par Lemcoe [1].

REFERENCE

[1] M.M. LEMCGE, "Stresses in layered elastic solids", <u>Transactions of American So-</u> <u>ciety of Civil Engineers</u>, 126 (1961), 194-215.

(1) Voir la Section "Fondation de grande longueur exerçant une charge linéairement répartie sur un sol homogène d'épaisseur infinie" (Sect. 6-4).

SECTION 6-7

FONDATION DE GRANDE LONGUEUR EXERÇANT UNE CHARGE NORMALE UNIFORME

(semelle, remblai) sur un sol d'épaisseur infinie dont le module augmente avec la profondeur

SOMMAIRE

- Définition du sol
- Définition de la charge
- Calcul direct du tassement
- Calcul des contraintes
- Bibliographie
DEFINITION DU SOL

Le coefficient de Poisson du sol est constant et son module d'Young augmente linéairement avec la profondeur :

 $E = \lambda z$ (z = 0 étant la surface du sol).

DEFINITION DE LA CHARGE

Une pression p est uniformément répartie sur une bande de largeur 2a et de longueur infinie sur la surface du sol (Fig. 1).

FIG. 1. - Définition du sol et de la charge.

CALCUL DIRECT DU TASSEMENT

6-7

Le tassement de la surface du sol en contact avec la charge est infini sauf si le coefficient de Poisson, v vaut 0,5. Il est alors le même pour tous les points de la surface chargée et il est donné par :

$$w = \frac{3 p}{2 \lambda}$$
 pour $-a < x < a$.

Le tassement des points extérieurs à la charge est alors nul :

$$w = 0$$
 pour $x > a$

Exemple 1 :

Considérons une semelle filante exerçant une charge de 0,6 bar (1 250 lb/sq. ft) sur un sol dont le coefficient de Poisson vaut 0,5 et dont le module d'Young augmente linéairement avec la profondeur partant de la valeur 0 en surface et passant par la valeur de 33 bars (69 000 lb/sq. ft) à 11 m (36 ft) de profondeur. Calculons son tassement.

La valeur de λ est : $\lambda = 33/11 = 3 \text{ bars/m} = 69 \ 000/36 = 1 \ 900 \ 1b/cu.$ ft. Le tassement vaut : $w = \frac{3 \times 0.6}{2 \times 3} = 0.3 \text{ m} = 30 \text{ cm},$ $w = \frac{3 \times 1.250}{2 \times 1.900} = 1 \text{ ft.}$

CALCUL DES CONTRAINTES

La valeur des contraintes provoquées dans le sol par la charge p est donnée par :

 $\sigma_z = pk_{\lambda 0}$

 $\sigma_x = pk_{\lambda 2}$

Un graphique donne les valeurs des coefficients sans dimensions $k_{\lambda 0}$ et $k_{\lambda 2}$ en tout point de l'axe Oz, pour diverses valeurs du coefficient de Poisson, v.

Il faut noter que les valeurs des contraintes pour v = 0,5 sont identiques à celles relatives au sol homogène (E = cte) qui, alors, ne dépendent pas de v.

Exemple 2 :

Reprenons l'exemple précédent en précisant que la largeur de la bande chargée est 2a = 1,8 m (6 ft). Quelle est la valeur de σ_z pour v = 0,5 à la profondeur de 2,7 m (9 ft) ?

Pour z/a = 3 et v = 0,5, le graphique donne $k_{\lambda 0} = 0,4$. D'où : $\sigma_{\mu} = 0,4 \times 0,6 = 0,24$ bar = 0,4 × 1 250 = 500 lb/sq. ft.

On vérifiera que cette valeur de $k_{\lambda 0}$ est identique à celle de k_0 pour un sol homogène (1) (exactement, $k_0 = 0,396$). Il n'en serait pas de même pour $v \neq 0,5$.

(1) Voir la section "Fondation de grande longueur exerçant une charge linéairement répartie sur un sol homogène d'épaisseur infinie" (Sect. 6-4).

EXPRESSION DES COEFFICIENTS

$$\begin{aligned} k_{\lambda 0} &= \frac{1}{2 \sin m \pi} \left[\left(1 - \frac{2 m^2 z^2}{z^2 + (a + x)^2} \right) \sin \left(2 m \operatorname{Arctg} \frac{a + x}{z} \right) \\ &+ \left(1 - \frac{2 m^2 z^2}{z^2 + (a - x)^2} \right) \sin \left(2 m \operatorname{Arctg} \frac{a - x}{z} \right) \\ &+ \frac{2 m z (a + x)}{z^2 + (a + x)^2} \cos \left(2 m \operatorname{Arctg} \frac{a + x}{z} \right) \\ &+ \frac{2 m z (a - x)}{z^2 + (a - x)^2} \cos \left(2 m \operatorname{Arctg} \frac{a - x}{z} \right) \end{aligned}$$

avec : $m = \sqrt{\frac{1-2\nu}{1-\nu}}$

BIBLIOGRAPHIE

Tous les résultats indiqués dans cette section sont dus à Gibson [1] et Gibson et Sills $\lceil 2 \rceil$.

REFERENCES

- R.E. GIBSON, "Some results concerning displacements and stresses in a non-homogeneous elastic half-space", <u>Géotechnique</u>, <u>17</u>, (1967), 58-67 (avec additifs : <u>18</u>, 275-276 et <u>19</u>, 160-161).
- [2] R.E. GIBSON and G.C. SILLS, "Some results concerning the plane deformation of a non-homogeneous elastic half-space", <u>Roscoe Memorial Symposium</u> (1971)

SECTION 6-8

FONDATION RIGIDE DE GRANDE LONGUEUR EXERÇANT UNE CHARGE INCLINÉE ET EXCENTRÉE

(semelle filante, fondation de mur de soutènement) sur un sol homogène d'épaisseur infinie

SOMMAIRE

- Définition du sol
- Définition de la charge
- Calcul du tassement
- Calcul de la rotation
- Calcul des contraintes
- Tables et Graphiques
- Expression des coefficients
- Bibliographie

Chapitre 6

DEFINITION DU SOL

Le sol est supposé <u>homogène sur une épaisseur infinie</u> ("milieu semi-infini"). Si le sol n'est pas homogène, les valeurs données ici pour les contraintes, en particulier celles de σ_z , peuvent être considérées comme une bonne approximation des contraintes réelles (sauf, peut-être, dans le cas où le sol est constitué d'une couche dure reposant sur une couche bien plus molle). On verra, par ailleurs, que l'hypothèse du milieu semi-infini ne permet pas le calcul du tassement. En revanche, elle permet le calcul de la rotation de la fondation.

DEFINITION DE LA CHARGE

Le calcul est fait pour une fondation infiniment longue ayant même distribution de charge dans toute section droite.

La résultante des charges appliquées est une force par unité de longueur, f, dont les composantes normale et tangentielle sont f_n et f_t . Son inclinaison δ (positive dans le sens trigonométrique) est définie par :

(1)
$$\delta = \operatorname{Arctg} \frac{f_{t}}{f_{n}}$$

Sa ligne d'application est à une distance E_x de l'axe de la fondation (Fig. 1). Le moment par unité de longueur a pour expression :

(2)
$$\mathcal{M} = - \mathbb{E}_{x} f_{n}$$
.

6-8

Il est positif dans le sens trigonométrique.

La base de la fondation peut être rigide ou lisse. Dans ce dernier cas, $f_{\pm} = 0.$

La fondation étant rigide, la distribution des contraintes au contact de la fondation et du sol n'est pas linéaire. Plusieurs cas sont à considérer :

- Si la fondation est lisse, on a alors $f_t = 0$ et la distribution de la charge est donnée par ses composantes normale et tangentielle :

(2)
$$p(x) = \frac{f_n}{2a} \frac{2}{\pi \sqrt{1 - x^2/a^2}} \left[1 + 2 \frac{E_x}{a} \frac{x}{a} \right]$$

(3) t(x) = 0

FIG. 1. — Définition de la résultante des charges exercées par la fondation sur le sol. Sur cette figure, δ et E_x sont positifs.

La formule (2) est représentée sur la figure 2. A titre de comparaison cette figure 2 donne également (dans le cadre, en haut) le cas de la distribution linéaire. On voit que, pour qu'il n'apparaisse pas de contraintes de traction au contact de la fondation et du sol, il faut que la résultante f_n soit appliquée dans la moitié centrale de la fondation (au lieu du tiers dans le cas de la distribution linéaire).

- <u>Si la fondation est rugueuse</u>, on sait exprimer la distribution des contraintes de contact dans le cas d'une force appliquée normale et excentrée :

(4)
$$p(x) = \frac{1-\nu}{\sqrt{3-4\nu}} \frac{f_n}{\sqrt{a^2-x^2}} \left\{ \frac{2}{\pi} \cos\left[\frac{1}{2\pi} \log(3-4\nu) \log\frac{a+x}{a-x}\right] + \frac{E_x}{a} \frac{4}{\pi + \frac{1}{\pi} \left[\log(3-4\nu)\right]^2} \left[\frac{x}{a} \cos\left(\frac{1}{2\pi} \log(3-4\nu) \log\frac{a+x}{a-x}\right) + \frac{1}{\pi} \log(3-4\nu) \sin\left(\frac{1}{2\pi} \log(3-4\nu) \log\frac{a+x}{a-x}\right) \right] \right\}$$

GIROUD. - Tables pour le calcul des fondations. Tome 2

6-8

(5)
$$t(x) = \frac{1-\nu}{\sqrt{3-4\nu}} \frac{f_n}{\sqrt{a^2-x^2}} \left\{ \frac{2}{\pi} \sin\left[\frac{1}{2\pi} \log(3-4\nu) \log\frac{a+x}{a-x}\right] + \frac{E_x}{a} \frac{4}{\pi + \frac{1}{\pi} \left[\log(3-4\nu)\right]^2} \left[\frac{x}{a} \sin\left(\frac{1}{2\pi} \log(3-4\nu) \log\frac{a+x}{a-x}\right) - \frac{1}{\pi} \log(3-4\nu) \cos\left(\frac{1}{2\pi} \log(3-4\nu) \log\frac{a+x}{a-x}\right) \right] \right\}$$

avec :

v : coefficient de Poisson du sol.

Dans le cas particulier v = 0,5, ces deux expressions deviennent les formules (2) et (3) : la distribution des contraintes de contact est alors la même que si la plaque était lisse. Dans ce cas, on sait également exprimer la distribution des contraintes de contact dues à une charge inclinée (la fondation étant, bien entendu, rugueuse) :

(6)
$$p(x) = 0$$

(7) $t(x) = \frac{f_t}{2a} \frac{2}{\pi \sqrt{1 - x^2/a^2}}$

En résumé :

- Si la fondation est lisse (et, par conséquent, la charge normale), la distribution des contraintes de contact est donnée par (2) et (3), quel que soit v.
- Si la fondation est rugueuse, la charge peut être inclinée et excentrée avec pour cas particuliers la charge normale (f_t = 0) et la charge centrée (E_x = 0) :
 - Si ν = 0,5, la distribution des contraintes de contact est donnée par
 (2) et (7).
 - Si v ≠ 0,5 on ne sait exprimer les contraintes de contact que si la charge est normale (f₊ = 0) et elles sont données par (4) et (5).

CALCUL DU TASSEMENT

Le tassement d'une charge de longueur infinie sur un sol homogène d'épaisseur infinie est infini. Il n'est donc pas possible de faire simultanément les deux hypothèses simplificatrices : longueur infinie de la charge et épaisseur infinie du sol compressible.

Pour faire un calcul direct du tassement, il faudra se reporter :

- soit au cas des fondations rectangulaires (sur un sol d'épaisseur infinie ou non);
- soit au cas des fondations de grande longueur (théoriquement de longueur infinie) sur une couche de sol d'épaisseur finie.

On pourra dans ces deux cas, ou bien utiliser les résultats relatifs aux fondations rigides, s'ils existent, ou bien, en leur abscence, utiliser le tassement moyen des charges uniformes.

Ou bien alors il faudra faire un <u>calcul indirect</u> par l'intermédiaire des contraintes données ci-après.

CALCUL DE LA ROTATION

La rotation d'une plaque lisse n'est due qu'au moment de la charge normale appliquée. La rotation d'une plaque rugueuse est également due, en partie, à la charge tangentielle appliquée. Mais ce deuxième effet est généralement petit vis à vis du premier et nous n'en tenons pas compte ici.

a) Rotation d'une fondation lisse.

La rotation d'une fondation rigide lisse est donnée par :

(8)

avec :

 $\phi = \frac{16}{\pi} \frac{1 - v^2}{E} \frac{M}{(2 a)^2} = 5,10 \frac{1 - v^2}{E} \frac{M}{(2 a)^2}$

 $\boldsymbol{\phi}$: angle de rotation,

- v : coefficient de Poisson du sol,
- E : module d'Young du sol,
- M: moment exercé sur la fondation (défini par la formule (2)),
- 2 a : largeur de la fondation.

L'expression (8) peut également s'écrire :

(9) $\phi = \frac{\mathcal{M}}{\mathbb{E} (2 a)^2} \overline{Q}_{\phi}$

avec :

(10)
$$\overline{Q}_{\phi} = \frac{16(1-v^2)}{\pi}$$

b) Rotation d'une fondation rugueuse.

La rotation d'une fondation rigide rugueuse (sous l'effet du seul moment), s'écrit :

(11)
$$\phi = \frac{16(1-v^2)}{\left[\pi + \frac{1}{\pi} (\log (3-4v))^2\right] E} \frac{\mathcal{M}}{(2a)^2}$$

avec :

 ϕ : angle de rotation

(les autres notations étant définies pour la formule (8)).

L'expression (11) peut également s'écrire :

(12)
$$\phi = \frac{\mathcal{H}}{\mathbb{E}(2 \mathbf{a})^2} \overline{\varphi}_{\phi \mathbf{r}}$$

avec :

(13)
$$\overline{Q}_{\phi r} = \frac{16(1-v^2)}{\pi + \frac{1}{\pi} \left[\log (3-4v) \right]^2}$$

Les coefficients sans dimensions \overline{Q}_{ϕ} (fondation lisse) et $\overline{Q}_{\phi r}$ (fondation rugueuse) sont donnés par le tableau suivant :

ν	0	0,1	0,2	0,3	0,4	0,5
৾৾৵	5,10	5,04	4,89	4,63	4,27	3,82
Q _{ør}	4,54	4,62	4,60	4,48	4,23	3,82

Exemple 1 :

Considérons une fondation de très grande longueur et de largeur 2 a = 1,8 m (6 ft). Elle supporte une charge normale ($f_t = 0$) de valeur $f_n = 20$ t/m (196 200 newtons/m) (13 440 lb/ft) appliquée à une distance de l'axe de la fondation égale à $E_x = 0,3$ m (1 ft). Les propriétés du sol sont v = 0,3 et E = 88 bars (184 000 lb/sq. ft). Quelle est la rotation de cette fondation ?

Calculons d'abord le moment.

 $\mathcal{M} = 0,3 \times 20 = 6 \text{ mt/m} = 0,3 \times 196\ 200 = 58\ 900 \text{ mN/m}$ $\mathcal{M} = 1 \times 13\ 440 = 13\ 440\ \text{ft. lb/ft.}$ On peut alors calculer l'angle de rotation. Si la fondation est lisse : $\phi = 4,63\ \frac{58\ 900}{88 \times 10^5 \times (1,8)^2} = 0,0095 = 4,63\ \frac{13\ 440}{184\ 000 \times (6)^2} = 0,0095$ $= 0,55^\circ = 33 \text{ minutes.}$

Si la fondation est rugueuse, le coefficient 4,63 est remplacé par 4,48 et l'on obtient :

 $\phi = 0,0092 = 0,53^{\circ} = 32$ minutes.

CALCUL DES CONTRAINTES

6-8

Les contraintes, en tout point du sol, sont données par les formules suivantes :

(14)

$$\begin{pmatrix}
\sigma_{z} = \frac{f_{n}}{2a} \left(\overline{k}_{o} + \frac{x}{|x|} \frac{E_{x}}{a} \overline{m}_{o} \right) + \frac{x}{|x|} \frac{f_{t}}{2a} \overline{k}_{1} \\
\tau_{zx} = \frac{f_{n}}{2a} \left(\frac{x}{|x|} \overline{k}_{1} + \frac{E_{x}}{a} \overline{m}_{1} \right) + \frac{f_{t}}{2a} \overline{k}_{2} \\
\sigma_{x} = \frac{f_{n}}{2a} \left(\overline{k}_{2} + \frac{x}{|x|} \frac{E_{x}}{a} \overline{m}_{2} \right) + \frac{x}{|x|} \frac{f_{t}}{2a} \overline{k}_{3} \\
\sigma_{y} = \nu \left(\sigma_{z} + \sigma_{x} \right) \\
\tau_{xy} = \tau_{yz} = 0$$

avec :

- 2 a : largeur de la fondation ;
- f_n, f_t : composantes normale et tangentielle de la charge f exercée par la fondation.
 - E_x : distance entre le point d'application de la charge et l'axe de la fondation ;
 - x, z : coordonnées du point où sont calculées les contraintes (voir Fig. 1) ;

Ces formules sont valables dans les cas suivants :

- si la base de la fondation est lisse, quel que soit v, mais, bien entendu, avec $f_+ = 0$;
- si la base de la fondation est rugueuse, uniquement pour v = 0,5 (néanmoins, si $v \neq 0,5$, les valeurs obtenues à l'aide de ces formules constituent une bonne approximation des contraintes réelles).

Exemple 2 :

Considérons une fondation de largeur 1,8 m (6 ft) exerçant sur le sol une charge de 342 000 newtons/m (23 900 lb/ft) inclinée positivement de $\delta = 30^{\circ}$ et dont la ligne d'application est située à gauche de l'axe de la fondation, à une distance de 0,136 m (0,45 ft) (Fig. 3). Quelle est la contrainte σ_{g} au point P situé sous le bord gauche de cette fondation à 1,8 m (6 ft) de profondeur ?

Calculons d'abord :

$$\begin{split} & f_n = f \cos \delta = 297 \ 000 \ \text{N/m} \ (20 \ 700 \ \text{lb/ft}), \\ & f_t = f \sin \delta = 171 \ 000 \ \text{N/m} \ (11 \ 950 \ \text{lb/ft}), \\ & \mathcal{H} = - \ (-0, 136 \times 297 \ 000) = 40 \ 400 \ \text{mN/m} \\ & \mathcal{H} = - \ (-0, 45 \times 20 \ 700) = 9 \ 300 \ \text{lb. ft/ft}. \\ & \text{La situation du point P est définie par :} \\ & x/a = -1 \quad \text{et} \quad z/a = 2. \\ & \text{On lit dans les tables :} \\ & \overline{k}_0 = 0, 407 \quad \overline{m}_0 = 0, 25 \quad \overline{k}_1 = 0, 139. \end{split}$$

On peut ensuite appliquer la première formule 14 en notant que :

$$\frac{x}{|x|} = -1 \text{ puisque x est négatif.}$$

D'où :
$$\sigma_{z} = \frac{297\ 000}{1,8} (0,407 + \frac{0,136}{0,9} \times 0,25) - \frac{171\ 000}{1,8} \times 0,139 = 0,6 \times 10^{5} \text{ N/m}^{2} = 0,6 \text{ bar}$$

$$\sigma_{z} = \frac{20\ 700}{6} (0,407 + \frac{0,45}{3} \times 0,25) - \frac{11\ 950}{6} \times 0,139 = 1\ 260 \text{ lb/sq. ft.}$$

Il est très intéressant de constater qu'avec la même résultante dans les deux cas, on obtienne la même valeur de σ_z au point P, ici pour une fondation rigide et, dans une section précédente (1), pour une charge linéairement répartie. Ceci est une illustration du principe de ST VENANT.

(1) Voir l'exemple 4 de la section intitulée "Fondation de grande longueur exerçant une charge linéairement répartie sur un sol homogène d'épaisseur infinie" (Section 6-4).

FIG. 3. - Définition de la fondation de l'exemple 2.

TABLES ET GRAPHIQUES

Coefficients	:	$\overline{\mathbf{k}}_{0},$	$\overline{k}_1, \overline{k}_1$	$\overline{k}_2, \overline{k}$	3 • • •	•••	 •	 • •	•	• •	•	p.	376-383
Coefficients	:	$\overline{\mathbf{m}}_{0}$	$\overline{\mathbf{m}}_{1}$	$\overline{\mathbf{m}}_{2}$,	$\overline{\mathbf{m}}_{3}$			 				p.	384-391

k		ĸ		**		******	<u>с</u> ж	XK	, X	/a	ĸ	—ж			<u> ж</u>	икик	
	0	0	0,2	0,4	0,6	0,8	1,0	1,2	1,6	2	3	4	6	8	10	20	4 0
Ĩ	0	C.637	0.650	0.695	0.796	1.061	∞	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0,2	C.648	C.663	0.715	0.836	1.112	1.087	0.213	0.012	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0,4	C.673	0.689	0.741	0.836	0.929	0.785	0.394	0.063	0.015	0.002	0.000	0.000	0.000	0.000	0.000	0.000
	0,6	C.69C	C.7C3	0.737	0.780	0.780	0.657	0.434	0.129	0.040	0.005	0.001	0.000	0.000	0.000	0.000	0.000
Į	0,8	C.691	C.697	0.711	0.716	0.682	0.583	0.435	0.183	0.072	0.011	0.003	0.001	0.000	0.000	0.000	0.000
	1,0	C.675	O.676	0.675	0.660	0.616	0.535	0.426	0.220	0.103	0.020	0.006	0.001	0.000	0.000	0.000	0.000
	1,2	C.648	C.646	0.636	0.612	0.567	0.499).414	0.245	0.131	0.030	0.009	0.002	0.001	0.000	0.000	0.000
	1,4	C.615	C.611	0.597	0.571	0.529	0.471	0.402	0.261	0.154	0.041	0.014	0.003	0.001	0.000	0.000	0.000
z/a	1,6 1,8 2,0 3,0	C.580 C.545 C.512 C.383	0.575 C.541 C.508 C.38C	0.561 0.527 0.495 0.373	0.535 0.503 0.474 0.362	0.497 0.469 0.444 0.347	D.447 D.426 D.407 O.329	0.390).378 0.365 0.308	0.270 0.275 0.277 0.262	0.173 0.187 0.197 0.215	0.053 0.065 0.076 0.118	0.019 0.025 0.031 0.061	0.004 0.005 0.007 0.018	0.001 0.002 0.002 0.007	0.001 0.001 0.001 0.003	0.000 0.000 0.000 0.000	0.000
Ĩ	4	C.3CC	C.299	0.295	0.289	0.281	0.271).26)	0.234	0.205	0.136	0.085	0.032	0.013	0.006	0.000	0.000
	5	C.245	C.244	0.242	0.239	0.234	0.229	0.222	0.206	0.188	0.140	0.098	0.045	0.021	0.010	0.001	0.000
	6	C.206	C.2C6	0.205	0.203	0.200	0.196	0.192	0.182	0.170	0.136	0.103	0.055	0.028	0.015	0.001	0.000
	8	C.157	O.157	0.156	0.155	0.154	0.152	0.150	0.145	0.140	0.122	0.102	0.066	0.040	0.025	0.003	0.000
Ŭ	10	C.126	0.126	0.126	0.125	0.125	0.124	0.123	0.120	0.117	0.107	0.094	0.069	0.048	0.032	0.005	0.000
	20	C.C64	C.C63	0.063	0.063	0.063	0.063	0.063	0.063	0.062	0.061	0.059	0.054	0.047	0.041	0.016	0.003
	40	O.C32	C.C32	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.031	0.031	0.030	0.029	0.028	0.020	0.008
	100	O.013	C.O13	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.012	0.012	0.009

1

6-8

the prover of the

k		ĸ		×	×ĸ	жж			X	a	к— Экс	ж	жж	XK		кж	ň
	1	0	0,2	0,4	0,6	0,8	1,0	1,2	1,6	2	3	4	6	8	10	2 0	4 0
Ĩ	0 0,2 0,4 0,6	- C. CCC - O. CCC - C. CCC - C. CCC	- C. CCC - C. C22 - C. C23 - C. C23	-0.000 -0.050 -0.042 -0.003	- 0.000 - 0.089 - 0.035 0.036	-0.000 -0.088 0.068 0.130	0.377 0.284 0.247	3.303 0.286 0.322 0.288	0.000 0.044 0.122 0.176	0.000 0.014 0.048 0.086	0.000 0.003 0.010 0.021	0.000 0.001 0.004 0.008	0.000 0.000 0.001 0.002	0.000 0.000 0.000 C.001	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000
Ŭ	0,8	- C.CCC	C.C1C	0.033	0.080	0.152	0.224	0.257	0.199	0.118	0.035	0.014	0.004	0.002	0.001	0.000	0.000
	1,0	- C.CCC	C.C24	0.056	0.101	0.157	0.207	0.233	0.205	D.140	0.049	0.021	0.006	0.003	0.001	0.000	0.000
	1,2	- C.CCO	C.C32	0.068	0.110	0.154	0.192	0.214	0.202	0.153	0.062	0.028	0.008	0.004	0.002	0.000	0.000
	1,4	- C.CCO	C.C35	0.071	0.110	0.147	0.177	0.197	0.195	0.159	0.074	0.035	0.011	0.005	0.002	0.000	0.000
e/a	1,6	- C.CCC	C.C35	0.071	0.105	0.138	0.164	0.181	0.185	0.161	0.084	0.043	0.014	0.0J6	0.003	0.000	0.000
	1,8	- C.CCC	C.C34	0.067	0.099	0.128	0.151	0.167	0.175	0.159	0.092	0.049	0.017	0.008	0.004	0.001	0.000
	2,0	- C.CCC	C.C32	0.063	0.092	D.118	0.139	0.154	0.165	0.155	0.098	0.056	0.020	0.009	0.005	0.001	0.000
	3,0	- C.CCC	C.C2C	0.040	0.059	0.076	0.090	0.102	0.118	0.123	0.105	0.076	0.035	0.018	0.010	0.001	0.000
Ì	4	-0.000	C.C13	0.026	0.038	0.050	0.060	0.070	0.084	0.093	0.094	0.079	0.046	0.026	0.015	0.002	0.00)
	5	-0.000	C.CC9	0.018	0.027	0.035	0.042	0.049	0.361	0.070	0.079	0.074	0.052	0.033	0.021	0.004	0.00)
	6	-0.000	C.CC7	0.013	0.019	0.025	0.031	0.036	0.046	0.054	0.065	0.066	0.053	0.037	0.025	0.005	0.001
	8	-0.000	C.CC4	0.008	0.011	0.015	0.018	0.022	0.328	0.034	0.044	C.050	0.048	0.040	0.030	0.008	0.001
Ĭ	10	-0.000	0.002	0.005	0.007	0.010	0.012	0.014	0.019	0.023	0.031	0.037	0.041	0.038	0.032	0.010	0.002
	20	-0.000	C.CO1	0.001	0.002	0.003	0.003	0.004	0.005	0.006	0.009	0.012	0.016	0.019	0.020	0.016	0.005
	40	-0.000	C.CCC	0.000	0.000	0.001	0.001	0.001	0.001	0.002	0.002	0.003	0.005	0.006	0.007	0.010	0.008
	100	-0.000	C.CCC	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.002	0.004

		ĸ		к — —ж		жж	——————————————————————————————————————			a	ĸ			ж		ік <u> — </u> ж	=>
	2	0	0,2	0,4	0,6	0,8	1,0	1,2	1,6	2	3	4	6	8	10	2 0	4 0
Ĭ	0 0,2 0,4 0,6 0,8 1,0	0.637 C.600 C.510 C.401 C.303 C.225	0.650 C.607 C.5C5 C.392 C.295 C.220	0.695 0.625 0.487 0.362 0.271 0.205	0.796 0.642 0.434 0.312 0.239 0.189	1.061 0.567 0.337 0.260 0.216 0.181	0.402 0.305 0.256 0.220 0.190	0.303 0.473 0.373 0.294 0.246 0.209	0.000 0.184 0.271 0.282 0.262 0.234	0.000 0.093 0.164 0.203 0.216 0.213	0.000 0.033 0.064 0.090 0.111 0.126	0.000 0.017 0.034 0.050 0.064 0.076	0.000 0.007 0.015 0.022 0.028 0.035	0.000 0.004 0.008 0.012 0.016 0.020	0.000 0.003 0.005 0.008 0.010 0.013	0.000 0.001 0.001 0.002 0.003 0.003	0.000 0.000 0.000 0.000 0.000 0.001
Ų	1,2	C.167 C.125	0.164	0.158	0.152	0.153	0.153	0.180	0.207	0.202	0.139	0.085	0.041	0.023	0.015	0.004	0.001
za	1,8 2,0 3,0	C.C73 C.C73 C.C57 C.C20	C.C74 C.C74 C.C58 C.C21	0.098 0.077 0.062 0.024	0.082 0.068 0.028	0.091 0.076 0.034	0.102 0.087 0.041	0.116 0.100 0.049	0.141 0.124 0.066	0.154 0.139 0.081	0.138 0.133 0.100	0.102 0.104 0.096	0.051 0.055 0.059 0.069	0.030 0.033 0.036 0.046	0.020 0.022 0.024 0.032	0.005	0.001 0.002 0.002
Ď	4 5 6 8	C.CC9 0.CO5 C.CC3 C.CO1	C.C1C C.C05 C.CC3 C.CC1	0.011 0.006 0.004 0.002	0.014 0.008 0.005 0.002	0.017 0.010 0.006 0.003	0.022 0.012 0.008 0.003	0.026 0.015 0.010 0.004	0.037 0.022 0.014 0.007	0.048 0.030 0.019 0.009	0.069 0.047 0.033 0.017	0.077 0.059 0.044 0.025	0.068 0.061 0.052 0.036	0.051 0.051 0.049 0.039	0.038 0.041 0.041 0.038	0.012 0.014 9.016 0.019	0.003 0.004 0.005 0.005
Ŭ	10 20 40 100	C.CO1 C.COO C.COO C.COO	0.001 C.CCC G.0CO C.CCC	0.001 0.000 0.000 0.000	C.001 0.000 0.000 0.000	0.001 0.000 0.000 0.000	0.002 0.000 0.000 0.000	0.002 0.000 0.000 0.000 0.000	0.004 0.000 0.000 0.000 0.000	0.005 0.001 0.000 0.000	0.010 0.001 0.000 0.000	0.015 0.002 0.000 0.000	0.025 0.005 0.001 0.000	0.030 0.008 0.001 0.000	0.032 0.010 0.002 0.000	0.020 0.016 0.005 0.005	0.007 0.010 0.008 0.002

1 1 1 1

Ē		ĸ==		4K	<u> </u>	×ĸ	—ж—		, <i>x</i>	Va	È	к	—ж	—ж	<u>ж</u>	ж — эк	Ð
	3	0	0,2	0,4	0,6	0,8	1	1,2	1,6	2	3	4	6	8	10	20	4 0
Ĩ	0 0,2 0,4 0,6	C.CC C.CC O.CU C.CC	C.C1 C.C8 C.11 C.11	C.02 C.19 O.24 C.21	0.04 0.36 0.39 0.31	0.10 0.69 0.53 0.38	∞ 0.96 0.60 0.42	1.80 1.13 0.68 0.47	0.97 0.89 0.71 0.55	0.71 0.68 0.61 0.52	0.43 0.43 0.41 0.39	0.32 0.32 0.31 0.30	0.21 0.21 0.21 0.20	0.15 0.15 0.15 0.15 0.15	0.12 0.12 0.12 0.12 0.12	0.06 0.06 0.06 0.06	0.03 0.03 0.03 0.03 0.03
Į	0,8 1,0 1,2 1,4	C.CC C.CO C.CC C.CO	C.CS 0.C6 C.C5 C.C3	C.17 O.12 O.09 C.06	0.23 0.17 0.12 0.09	0.28 0.21 0.15 0.11	0.31 0.23 0.18 0.14	0.35 0.26 0.20 0.16	0.42 0.33 0.26 0.20	0.44 0.36 0.30 0.24	0.36 0.33 0.30 0.27	0.29 0.28 0.26 0.24	0.20 0.20 0.19 0.19	0.15 0.15 0.15 0.15	0.12 0.12 0.12 0.12 0.12	0.06 0.06 0.06 0.06	0.03 0.03 0.03 0.03 0.03
$z_{/a}$	1,6 1,8 2 3	0.00 0.00 0.00 0.00	C.C2 C.C2 O.C1 C.CC	0.05 C.03 C.03 0.01	0.07 0.05 0.04 0.01	0.09 0.07 0.05 0.02	0.10 0.08 0.06 0.02	0.12 0.10 0.08 0.03	0.16 0.13 0.11 0.11	0.20 9.17 0.14 9.96	0.24 0.21 0.19 0.10	0.23 0.21 0.19 0.12	0.18 0.17 0.17 0.13	0.14 0.14 0.14 0.12	C.12 C.12 C.11 C.10	0.06 0.06 0.06 0.06	0.03 0.03 0.03 0.03 0.03
Ĩ	4 5 6 8	C.CC C.CO C.CO C.CC	C.CC 0.CC 0.CC C.CC	C.CO C.OO C.OO C.OO	C.0C O.0C O.00 O.00 O.00	0.01 0.00 0.00 0.00	0.01 0.00 0.00 0.00	0.01 0.01 0.00 0.00	0.02 0.01 0.00 0.00	0.03 0.01 0.01 0.00	0.05 0.03 0.02 0.01	0.07 0.05 0.03 0.01	0.10 0.07 0.05 0.03	0.10 0.08 0.06 0.04	C.C9 C.C8 C.O7 C.O5	C.06 C.05 O.05 O.05	0.03 0.03 0.03 0.03
Ť	10 20 40 100	C.CC C.CC C.CC C.CC	0.00 0.00 0.00 0.00 0.00	C.00 0.00 C.00 C.CO	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 00.0 00.0	0.01 0.00 0.00	0.01 0.00 0.00 0.00	0.02 0.00 0.00 0.00	C.C3 C.OO C.OO C.OO	0.04 0.02 0.00 0.00	0.03 0.02 0.01 0.00

*

GIROUD. - Tables pour le calcul des fondations. Tome 2

26

6-8

Chapitre 6

384

m		×	ж	к	ж	ж	_ж	⇒ X	a	к — ж			Эк	4 K	—
	0	0	0,2	0,4	0,6	0,8	1,0	1 ,2	1,6	2	3	4	6	8	10
Ď	0 0,2 0,4 0,6	0,00 0.00 0.00 0.00	0,26 C.27 C.29 C.29	0,56 0.59 0.62 0.58	0,95 1.03 1.01 C.87	1,70 1.77 1.38 1.05	00 1.85 1.26 0.96	0.00 0.35 0.63 0.65	0.00 0.02 0.10 0.19	0.00 0.00 0.02 0.05	0.00 0.00 0.00 0.01	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00	C.00 C.00 C.00 C.00
Į	0,8 1,0 1,2 1,4	00.0 00.0 0.00 0.00	C.26 C.22 C.18 C.14	0.50 0.41 C.33 0.27	0.71 0.57 0.45 0.36	0.81 0.64 0.51 0.42	0.77 0.62 0.51 0.42	0.60 0.52 0.46 0.39	0.25 0.28 0.28 0.28 0.27	0.09 0.12 0.15 0.16	0.01 0.02 0.03 0.04	0.00 0.00 0.01 0.01	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	C.CC C.CC 0.00 C.00
z/a	1,6 1,8 2 3	C.CO C.CO C.CO C.CC	C.11 C.CS O.07 C.C3	C.21 C.17 O.14 C.05	0.29 0.24 0.19 0.08	0.34 0.28 0.23 0.10	0.35 0.29 0.25 0.11	D.34 0.29 0.25 0.12	D.26 0.24 0.21 0.12	0.17 0.17 0.16 0.11	0.05 0.05 0.06 0.07	0.01 0.02 0.02 0.04	0.00 0.00 0.00 0.01	0.00 0.00 0.00 0.00	C.CC C.CO C.CO C.CO
Ď	4 5 6 8	C.CC C.CC C.CC C.CO	C.C1 0.01 C.CC C.CC	C.03 C.01 C.01 C.00	C.04 O.02 C.01 O.01	0.05 0.03 0.02 0.01	0.06 0.03 0.02 0.01	0.06 0.04 0.02 0.01	0.07 0.04 0.03 0.01	0.07 0.05 0.03 0.02	0.06 0.05 0.03 0.02	0.04 0.04 0.03 0.02	0.01 0.02 0.02 0.01	0.01 0.01 0.01 0.01	0.00 0.00 0.00 0.00 0.01
Ň	10 20 40 100	0.00 0.00 0.00 0.00	c.cc c.cc c.cc c.cc	0.00 C.00 C.00 C.00	0.00 0.00 0.00 C.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.01 0.00 0.00 0.00	0.01 0.00 0.00 0.00	0.01 0.00 0.00 0.00	0.01 0.00 0.00 0.00	0.01 0.00 0.00 D.00	0.01 0.00 0.00 0.00	0.01 0.00 0.00 0.00	C.01 0.00 C.CC C.00

m		×	жж	к			ж 	* X	'a'	ж	×ĸ	XK		4K	<u> </u> ₩
	1	0	0,2	0 ,4	0,6	0,8	1,0	1,2	1,6	2	3	4	6	8	10
X X X	0 0,2 0,4 0,6 0,8 1,0 1,2 1,4	C.CC -C.24 -C.4C -C.47 -C.47 -C.43 -C.38 -C.33	C.CC - C.25 - C.4C - C.46 - C.45 - C.45 - C.41 - C.37 - C.32	C.00 -0.28 -C.41 -0.42 -0.39 -C.35 -0.31 -0.27	C.00 -C.35 -0.37 -0.31 -0.27 -C.24 -0.22 -0.20	0.00 -0.32 -0.13 -0.09 -0.09 -0.10 -0.11 -0.12	0.59 0.33 0.19 0.10 0.04 -0.00 -0.03	0.00 0.46 0.45 0.32 0.22 0.14 0.08 0.04	0.30 0.06 0.16 0.21 0.21 0.18 0.14 0.14	3.33 0.02 0.06 0.10 0.12 3.13 0.12 3.11	0.00 0.00 0.01 0.02 0.03 0.04 0.04 0.04 0.04	0.00 0.00 0.01 0.01 0.01 0.02 0.02	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00	C.00 C.00 C.00 C.00 C.00 C.00 C.00 C.00
z/a *	1,6 1,8 2 3	- C.29 - C.25 - C.22 - C.11	- C.28 - C.24 - C.21 - C.11	- C.24 - 0.21 - 0.19 - 0.11	- C.18 - 0.17 - 0.15 - C.09	-0.12 -0.12 -0.11 -0.08	-0.05 -0.06 -0.07 -0.06	0.01 -0.01 -0.03 -0.05	0.08 0.05 0.03 -0.02	0.09 0.08 0.06 0.01	0.05 0.05 0.05 0.03	0.02 0.03 0.03 0.03	0.01 0.01 0.01 0.01	0.00 0.00 0.00 0.01	C.CC C.CC C.OO C.OO
	4 5 8 10	-C.C7 -C.C5 -C.C3 -C.C2 -0.01	- 0.07 - 0.05 - C.03 - C.02 - 0.01	- C. 07 - 0.04 - 0.03 - C. 02 - 0.01	-0.06 -0.04 -0.03 -0.02 -0.01	-0.06 -0.04 -0.03 -0.02 -0.01	-0.05 -0.04 -0.03 -0.02 -0.01	-0.04 -0.03 -0.03 -0.02 -0.01	-0.03 -0.02 -0.02 -0.01 -0.01	-0.01 -0.02 -0.02 -0.01	0.01 0.00 -0.00 -0.01	0.02 0.01 0.00 -0.00	0.01 0.01 0.01 0.00	0.01 0.01 0.00 0.00	C.CC C.CC C.CC C.CC C.CO
Ď	2 0 4 0 100	-c.cc -c.cc -c.co	- c. cc - c. cc - c. cc	-0.00 -C.00 -C.00	-0.00 -0.00 -0.00	-0.00 -0.00 -0.00	-0.00 -0.00 -0.00	-0.00 -0.00 -0.00	-0.00 -0.00 -0.00	-0.00 -0.00 -0.00	-0.00 -0.00 -0.00	-0.00 -0.00 -0.00	-0.00 -0.00 -0.00	-0.00 -0.00 -0.00	- 0.00 - 0.00 - 0.00

m		×	ж——	кж			ж——	* X	'a '		×ĸ		≫к===>	к ж	X
	2	0	0,2	0,4	0,6	0,8	1,0	1,2	1,6	2	3	4	6	8	10
Ň	0 0,2 0,4 0,6	0,00 -c.co -c.co -c.co	0,26 0.21 C.11 0.C2	0,56 0.42 0.19 0.03	0,95 0.61 0.19 -0.01	0.00 0.59 0.10 -0.05	0.42 0.13 -0.00	0.00 0.62 0.32 0.13	0.00 0.20 0.26 0.21	0.00 0.09 0.14 0.15	0.00 0.02 0.04 0.05	0.00 0.01 0.02 0.02	0.00 0.00 0.00 0.01	0.00 0.00 0.00 0.00	C.00 C.00 C.00 C.00
Ŭ	0,8	-0.00	-0.C2	-0.06	-0.10	-0.11	-0.07	0.02	0.14	0.13	0.06	0.03	0.01	0.00	C.00
	1,0	-0.00	-C.C5	-0.09	-0.12	-0.13	-0.10	-0.04	0.07	0.10	0.06	0.03	0.01	0.00	C.00
	1,2	-0.00	-0.C5	-0.09	-0.12	-0.13	-0.11	-0.07	0.03	0.07	0.06	0.03	0.01	0.01	C.CC
	1,4	-0.00	-C.C5	-0.09	-0.11	-0.12	-0.11	-0.08	-0.01	0.04	0.05	0.03	0.01	0.01	C.OO
z/a	1,6	-c.cc	- C.C4	- C. C8	-0.10	-0.11	-0.10	-0.08	-0.03	0.02	0.05	0.03	0.01	0.01	C.00
	1,8	-c.co	- C.C4	- C. 07	-0.09	-0.10	-0.09	-0.08	-0.04	0.00	0.04	0.03	0.01	0.01	C.CC
	2	-c.cc	- C.C3	- C. 06	-0.08	-0.09	-0.09	-0.08	-0.05	-0.01	0.03	0.03	0.01	0.01	C.00
	3	-c.cc	- C.C1	- O. 02	-0.03	-0.04	-0.05	-0.05	-0.04	-0.03	-0.00	0.01	0.01	0.01	C.01
Ň	4	-0.00	- 0.01	- C. 01	-0.02	-0.02	-0.03	-0.03	-0.03	-0.03	-0.01	-0.00	0.01	0.01	C.01
	5	-0.00	- C.CC	- C. 01	-0.01	-0.01	-0.01	-0.02	-0.02	-0.02	-3.01	-0.01	0.00	0.01	G.00
	6	-0.00	- 0.GC	- O. 00	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.00	0.00	C.00
	8	-0.00	- C.CC	- C. 00	-0.00	-0.00	-0.00	-0.00	-0.01	-0.01	-0.01	-0.01	-0.00	-0.00	G.00
Ĭ	10	- C.CC	- C.CC	- C. CC	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.01	-0.00	-0.00	- 0.00
	20	- C.CC	- C.CC	- C. CO	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	- 0.00
	40	- C.CC	- C.CC	- C. CO	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	- 0.00
	100	- C.CO	- C.CC	- C. CO	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	- 0.00

m		×	жж	сж	×ĸ		⇒ĸ <u></u>	× X	'a '		×ĸ	X		ик <u>—</u> — ж	X
	3	0	0,2	0,4	0,6	0,8	1,0	1,2	1,6	2	3	4	6	8	10
Ĩ	0 0,2 0,4 0,6	-2.55 -1.81 -1.19 -C.75	-2.55 -1.70 -1.09 -0.68	-2.55 -1.55 -C.94 -C.59	-2.55 -1.21 -0.68 -0.46	-2.55 -0.50 -0.38 -0.35	∞ 0.17 -0.20 -0.26	2,06 0.70 0.04 -0.15	0,72 3.54 0.29 3.39	0,39).34 0.25).15	0.15).14 0.13 0.11	0.08 0.08 0.07 0.07	0.03 0.03 0.03 0.03	0.02 0.02 0.02 0.02	C.C1 0.01 C.01 C.01
X	0,8 1,0 1,2 1,4	-C.47 -C.30 -C.19 -C.12	- C.43 - C.27 - C.18 - C.12	-0.38 -0.26 -0.18 -0.13	-0.33 -0.25 -0.18 -0.14	-0.29 -0.24 -0.19 -0.15	-0.26 -0.23 -0.19 -0.16	-0.20 -0.20 -0.18 -0.15	-).)3 -0.09 -0.11 -0.12	0.06 0.00 -0.04 -0.06	0.08 0.06 0.04 0.02	0.06 0.05 0.04 0.03	0.03 0.03 0.03 0.02	0.02 0.02 0.02 0.02	C.01 C.01 C.01 C.01 C.01
z/a	1,6 1,8 2 3	- C.C8 - C.C5 - C.C4 - C.C1	- C.C8 - C.C6 - 0.C4 - C.C1	- C.09 - C.07 - C.05 - C.05	-C.10 -0.08 -C.06 -C.02	-0.12 -0.09 -0.07 -0.02	-0.13 -0.10 -0.08 -0.03	-0.13 -0.11 -0.09 -0.03	-0.11 -0.10 -0.09 -0.04	-0.07 -0.07 -0.07 -0.25	0.00 -0.01 -0.02 -0.03	0.02 0.01 0.01 -0.01	0.02 0.02 0.02 0.00	0.01 0.01 0.01 0.01	C.01 O.01 C.C1 C.01
Ď	4 5 6 8	- C.CC - C.CC - C.CO - C.CC	- c.cc - c.cc - c.cc - c.cc - c.cc	- C. CC - C. CO - O. OO - C. OO	- C. C1 - C. CC - C. CC - C. CO - C. OO - O. OO	-0.01 -0.00 -0.00 -0.00	-0.01 -0.01 -0.00 -0.00	-0.01 -0.01 -0.00 -0.00	-0.02 -0.01 -0.01 -0.00	-0.02 -0.01 -0.01 -0.00	-0.03 -0.02 -0.01 -0.01	-0.02 -0.02 -0.01 -0.01	-0.00 -0.01 -0.01 -0.01	0.00 -0.00 -0.00 -0.00	0.00 0.00 - 0.00 - 0.00
Ŭ	10 20 40 100	-c.cc -c.cc -c.cc -c.cc	- c. cc - c. cc - c. cc - c. cc	- C. 00 - O. 00 - C. 00 - C. 00	-0.00 -0.00 -0.00 -0.00	-0.00 -0.00 -0.00 -0.00	-0.00 -0.00 -0.00 -0.00	-0.00 -3.30 -0.00 -0.00	-0.00 -3.30 -0.00 -0.30	00.0- 00.0- 00.0- 00.0-	-0.00 -0.00 -0.00 -0.00	-0.00 -0.00 -0.00 -0.00	-0.00 -0.00 -0.00 -0.00	-0.00 -0.00 -0.00 -0.00	- 0.00 - 0.00 - 0.00 - 0.00

EXPRESSION DES COEFFICIENTS \overline{k} et \overline{m}

en tout point du sol

$$\frac{\bar{k}_{0}}{\bar{k}_{2}} = \frac{2 a}{\pi \sqrt{(a^{2} + x^{2} + z^{2})^{2}} - 4 a^{2} x^{2}}} \left\{ \sqrt{\frac{1}{2} + \frac{a^{2} - x^{2} + z^{2}}{2 \sqrt{(a^{2} + x^{2} + z^{2})^{2} - 4 a^{2} x^{2}}}} \right.$$

$$\pm \frac{z}{\sqrt{(a^{2} + x^{2} + z^{2})^{2} - 4 a^{2} x^{2}}} \left[z \sqrt{\frac{1}{2} + \frac{a^{2} - x^{2} + z^{2}}{2 \sqrt{(a^{2} + x^{2} + z^{2})^{2} - 4 a^{2} x^{2}}}} \right]$$

$$\left(2 \frac{a^{2} - x^{2} + z^{2}}{\sqrt{(a^{2} + x^{2} + z^{2})^{2} - 4 a^{2} x^{2}}} - 1 \right) + |x| \sqrt{\frac{1}{2} - \frac{a^{2} - x^{2} + z^{2}}{2 \sqrt{(a^{2} + x^{2} + z^{2})^{2} - 4 a^{2} x^{2}}}} \right]$$

$$\left(2 \frac{a^{2} - x^{2} + z^{2}}{\sqrt{(a^{2} + x^{2} + z^{2})^{2} - 4 a^{2} x^{2}}} - 1 \right) + |x| \sqrt{\frac{1}{2} - \frac{a^{2} - x^{2} + z^{2}}{2 \sqrt{(a^{2} + x^{2} + z^{2})^{2} - 4 a^{2} x^{2}}}} \right]$$

$$\left(2 \frac{a^{2} - x^{2} + z^{2}}{\sqrt{(a^{2} + x^{2} + z^{2})^{2} - 4 a^{2} x^{2}}} + 1 \right) \right] \right\}$$

$$= 2 a zx$$

$$\overline{k}_{1} = \frac{2 a zx}{\pi \left[(a^{2} + x^{2} + z^{2})^{2} - 4 a^{2} x^{2} \right]^{3/4}} \left[\sqrt{\frac{1}{2}} + \frac{a^{2} - x^{2} + z}{2 \sqrt{(a^{2} + x^{2} + z^{2})^{2} - 4 a^{2} x^{2}}} \right]$$

$$\left(2 \frac{a^{2} - x^{2} + z^{2}}{\sqrt{(a^{2} + x^{2} + z^{2})^{2} - 4 a^{2} x^{2}}} - 1 \right) - \frac{z}{|x|} \sqrt{\frac{1}{2}} - \frac{a^{2} - x^{2} + z^{2}}{2 \sqrt{(a^{2} + x^{2} + z^{2})^{2} - 4 a^{2} x^{2}}} \right]$$

$$\left(2 \frac{a^{2} - x^{2} + z^{2}}{(a^{2} + x^{2} + z^{2})^{2} - 4 a^{2} x^{2}} + 1 \right)$$

 $\overline{k}_3, \overline{m}_0, \overline{m}_1, \overline{m}_2, \overline{m}_3$: pas d'expression explicite connue.

٩,

EXPRESSION A LA SURFACE DU SOL (z = 0)

$$\overline{k}_{0} = \overline{k}_{2} \begin{cases} = \frac{2 a}{\pi \sqrt{a^{2} - x^{2}}} & \text{si } |x| < a \\ = 0 & \text{si } |x| > a \end{cases}$$

$$\overline{k}_{1} = 0$$

$$\overline{k}_{3} : \text{ pas d'expression explicite connue.}$$

$$\overline{m}_{0} = \overline{m}_{2} \begin{cases} = \frac{4 x}{\pi \sqrt{a^{2} - x^{2}}} & \text{si } |x| < a \\ = 0 & \text{si } |x| > a \end{cases}$$

$$\overline{m}_{1} = 0$$

$$\overline{m}_{1} = 0$$

$$\int_{-\infty}^{-\infty} \frac{8/\pi}{\pi (x^{2} - x^{2})} & \text{si } |x| < a \\ = \infty & \text{si } |x| < a \\ = x^{2} & \text{si } |x| < a \end{cases}$$

EXPRESSIONS SUR L'AXE Oz (x = 0)

$$\overline{k}_{0} = \frac{2 a}{\pi} \frac{a^{2} + 2 z^{2}}{(a^{2} + z^{2})^{3/2}}$$

$$\overline{k}_{1} = 0$$

$$\overline{k}_{2} = \frac{2 a^{3}}{\pi (a^{2} + z^{2})^{3/2}}$$

$$\overline{k}_{3} = 0$$

$$\overline{m}_{0} = 0$$

$$\overline{m}_{1} = -\frac{\frac{4 a^{2} z}{\pi (a^{2} + z^{2})^{3/2}}}{\pi (a^{2} + z^{2})^{3/2}}$$

$$\overline{m}_{2} = 0$$

$$\overline{m}_{3} = -\frac{8}{\pi} \left(1 - \frac{z(3 a^{2} + 2 z^{2})}{2(a^{2} + z^{2})^{3/2}}\right)$$

BIBLIOGRAPHIE

L'expression de la distribution des charges au contact d'une fondation rigide rugueuse et du sol a été établie par Muskhelishvili [3] et Abramov [1]. La rotation de la fondaison rigide rugueuse a été calculée par Muskhelishvili [3] et celle de la fondation rigide lisse par Froelich [2]. Les coefficients \overline{k}_0 , \overline{k}_1 et \overline{k}_2 pour le calcul des contraintes ont été établis par Sneddon [4]. Nous avons calculé les valeurs numériques des coefficients \overline{k}_0 , \overline{k}_1 et \overline{k}_2 à partir des expressions données par Sneddon et nous avons procédé à un calcul par intégration numérique pour les coefficients \overline{k}_3 , \overline{m}_0 , \overline{m}_1 , \overline{m}_2 et \overline{m}_3 .

REFERENCES

- [1] V.M. ABRAMOV, "The problem of the contact of an elastic nalf-plane with an absolutely rigid base for the determination of the frictional force", <u>Doklady</u> <u>Akad. Sciences U.R.S.S.</u>, <u>17</u>, 4 (1937), 173-178.
- [2] O.K. FROELICH, "Uber eine einfache Anwendung de Potentialtheorie auf die Berechnung der Schiefstellung von Bauwerken", <u>Anzeiger der. math. natur. Klasse</u> <u>der Osterreich Akademie der Wissenschaften</u>, 7 (Wien, 1952).
- [3] N.I. MUSKHELISHVILI, "Some basic problems of the mathematical theory of elasticity" Noordhoff (Groningen, 1953).
- [4] I.N. SNEDDON, "Fourier transforms", Mc. Graw Hill (New York, 1951), p. 411.

SECTION 6-9

6-9

FONDATION RIGIDE DE GRANDE LONGUEUR EXERÇANT UNE CHARGE NORMALE EXCENTRÉE

(semelles, fondation de mur de soutènement) sur une couche de sol homogène d'épaisseur finie

SOMMAIRE

- Définition du sol
- Définition de la charge
- Calcul direct du tassement
- Calcul de la rotation
- Calcul des contraintes
- Table
- Bibliographie

DEFINITION DU SOL

La <u>couche de sol homogène</u> d'épaisseur H repose sur un <u>substratum indéforma</u>ble auquel elle adhère parfaitement.

DEFINITION DE LA CHARGE

La fondation est une plaque de longueur infinie et de largeur 2 a, rigide et lisse, supportant une charge verticale excentrée (Fig. 1). La plaque étant lisse, les contraintes qui règnent à son contact avec le sol sont normales alors que pour une fondation réelle rugueuse elles sont inclinées. Toutefois cette différence n'affecte les tassements, les rotations et les contraintes σ_{z} que d'une façon négligeable.

FIG. 1. - Définition du sol et de la charge.

CALCUL DIRECT DU TASSEMENT

Lorsque la charge est centrée (E = 0) le tassement de la fondation est donné par :

$$w = \frac{p 2 a}{E} \overline{p}_{H} = \frac{r_{n}}{E} \overline{p}_{H}$$

avec :

6-9

w : tassement ; $p = f_n/2 a$: pression moyenne exercée sur le sol par la fondation ;
E : module d'Young du sol ;

f : force par unité de longueur exercée par la fondation sur le sol ;

 $\bar{p}_{_{\rm H}}$: coefficient sans dimensions dépendant de H/a et de v ;

- H : épaisseur de la couche de sol ;
- a : demi-largeur de la fondation ;
- v : coefficient de Poisson du sol.

La valeur de \overline{p}_{H} est donnée dans un tableau pour v = 1/3

Exemple 1 :

Considérons une semelle filante de 0,9 m (3 ft) de large supportant une charge linéaire de 150.000 newtons/m (15,3 t/m ou 10 500 lb/ft) et reposant sur une couche de sol de 4,5 m (15 ft) d'épaisseur. Quel est son tassement si le sol a pour module E = 41 bars (85 000 lb/sq. ft) et coefficient de Poisson, v = 0,33 ?

Pour H/2 a = 5, le tableau donne $\overline{p}_{H} = 1,38$. D'où : w = $\frac{150\ 000}{41\ \times\ 10^{5}}$ × 1,38 = 0,05 m = 5 cm, $\dot{w} = \frac{10\ 500}{85\ 000}$ × 1,38 = 0,17 ft = 2 in.

Notons qu'une bonne approximation du tassement d'une semelle rigide est donnée par la formule du "tassement moyen" donné dans une section précédente (1). On pourra donc s'y reporter, notamment pour les valeurs de v autres que 1/3.

CALCUL DIRECT DE LA ROTATION

Lorsque la charge est excentrée $(E_x \neq 0)$, la fondation subit une rotation donnée par :

$$\phi \simeq tg \phi = \frac{1}{E} \left(\frac{f_n}{2a} \right) \left(\frac{E_x}{2a} \right) \overline{q}_{\phi},$$

(1) Section intitulée "Fondation de grande longueur exerçant une charge normale uniforme sur une couche de sol homogène d'épaisseur finie" (Sect. 6-5).

φ : angle de la fondation avec l'horizontale ;
E : module d'Young du sol ;
f_n : force par unité de longueur exercée par la fondation sur le sol ;
E : distance entre la ligne d'application de la charge et la ligne médiane de la fondation ;
2 a : largeur de la fondation ;
q_φ : coefficient sans dimensions dépendant de H/a et v ;
H : épaisseur de la couche de sol ;
v : coefficient de Poisson du sol.
La valeur de q_φ est donnée dans un tableau pour v = 1/3.

Exemple 2 :

Reprenons l'exemple précédent avec $E_x = 10 \text{ cm} (4 \text{ in})$. Quelle est la rotation de la fondation ?

Notons, en premier lieu, que le tassement de la ligne médiane de la semelle est le même que dans l'exemple précédent. Le tassement des autres points s'en déduit compte tenu de l'angle de rotation.

Le tableau donne $\overline{q}_{\phi} = 4,51$ pour H/2a = 5. D'où : $\phi = \frac{1}{41 \times 10^5} \times \frac{150\ 000}{0,9} \times \frac{0,1}{0,9} = 0,02$ $\phi = \frac{1}{85\ 000} \times \frac{10\ 500}{3} \times \frac{1}{3 \times 12} = 0,02$ 0,02 radian = 1,15°.

CALCUL DES CONTRAINTES

Aucun résultat n'étant donné pour ce cas, on pourra avoir une valeur approchée des contraintes en se reportant :

- à la section "Fondation rigide de grande longueur exerçant une charge inclinée et excentrée sur un sol homogène d'épaisseur infinie" (Section 6-8);
- à la section "Fondation de grande longueur exerçant une charge normale uniforme sur une couche de sol homogène d'épaisseur finie" (ceci uniquement si la charge est centrée) (Section 6-5).

398

avec :

 $\mathcal{V} = \frac{1}{3}$

Ha	<u>H</u> 2 a	Ē	$\overline{\mathfrak{q}}_{arphi}$	H a	<u>H</u> 2 a	P _H	\overline{q}_{φ}
0	0	0	0	2.4	1.2	0.63	4.10
0.2	0.1	0.065	0.70	2.6	1.3	0.67	4.14
0.4	0.2	0.13	1.30	2.8	1.4	0.70	4.19
0.6	0.3	0.19	1.95	3	1.5	0.73	4.24
0.8	0.4	0.25	2.40	4	2	0.88	4.36
1	0.5	0.31	2.84	5	2.5	0.99	4.42
1.2	0.6	0.37	3.14	6	3	1.10	4.48
1.4	0.7	0.42	3.38	8	4	1.26	4.51
1.6	0.8	0.46	3.60	10	5	1.38	4.51
1.8	0.9	0.51	3.80	20	10	1.77	4.52
2	1	0.55	3.92	40	20	2.18	4.52
2.2	1.1	0.59	4.02	8	œ	ω	4.52

(d'après PRIKHODCHENKO)

BIBLIOGRAPHIE

Les valeurs de \overline{p}_{H} et \overline{q}_{ϕ} ont été calculées par Prikhodchenko [1] pour quelques valeurs de H/a et nous avons complété ces résultats par des interpolations.

REFERENCE

[1] O.E. PRIKHODCHENKO, "Calculation of a rigid strip foundation resting in a Soil layer underlain by a rocky-base problem", <u>Osnovaniya i Mekhanika Gruntov</u>, <u>2</u> (mars-avr. 1966), 14-6 (Traduction américaine p. 100-104).

GIROUD. — Tables pour le calcul des fondations. Tome 2

399

6-9

SECTION 6-10

REMBLAI DE GRANDE LONGUEUR ET DE SECTION TRIANGULAIRE OU TRAPÉZOÏDALE

(digues, remblais routiers) sur un sol homogène d'épaisseur infinie

SOMMAIRE

- Définition du sol
- Définition de la charge
- Calcul direct du tassement
- Calcul des contraintes
- Tables et Graphiques
- Expression des coefficients
- Bibliographie

Chapitre 6

DEFINITION DU SOL

Le sol est supposé <u>homogène sur une épaisseur infinie</u> ("milieu semi-infini"). Si le sol n'est pas homogène, les valeurs données ici pour les contraintes, en particulier celles de σ_z , peuvent être considérées comme une bonne approximation des contraintes réelles (sauf, peut-être, dans le cas où le sol est constitué d'une couche dure reposant sur une couche bien plus molle). On verra, par ailleurs, que l'hypothèse du milieu semi-infini ne permet pas le calcul du tassement.

DEFINITION DE LA CHARGE

On admet, en général, que le remblai exerce sur le sol une charge normale dont la distribution se déduit de la section par une affinité de rapport γ (poids volumique du matériau en remblai) (Voir Fig. 1). Ainsi, la répartition de la charge est triangulaire ou trapézoïdale selon que la section du remblai est triangulaire ou trapézoïdale.

FIG. 1. — Remblais de section dissymétrique (a) triangulaire (b) trapézoïdale (En haut : section du remblai. En bas : charge exercée sur le sol par le remblai).

Section 6-10

Si la section du remblai est symétrique (tout en restant triangulaire ou trapézoïdale) (Fig. 2), on peut également considérer que cette distribution est parabolique avec :

(1) $p_{max} = 0,75 \gamma h(1 + a'/a)$

Toutefois, une telle distribution n'est possible que si :

 $0 \leq a'/a \leq 1/3$.

(2)

(b)

FIG. 2. - Remblais de section symétrique (a) triangulaire
(b) trapézoïdale. (En haut : section du remblai. Au milieu : charge linéaire égale au poids du remblai. En bas : charge parabolique égale au poids du remblai).

Exemple 1 :

Digue trapézoïdale symétrique de 8 m (26 ft) de haut, 36 m (118 ft) de large à la base et 4 m (13 ft) de plateforme. Masse volumique du matériau de la digue : $\rho = 2 070 \text{ kg/m}^3 = 129 \text{ lb/cu. ft. Quelle est la valeur maximale de la charge ?}$

c = 16 m = 52 ft, a = 18 m = 59 ft, c/a = 0,89, $\gamma = 2 \ 070 \times 9,81 = 20 \ 300 \ \text{newtons/m}^3$. Distribution parabolique : $p_{max} = 0,75 \times 20 \ 300 \times 8 \times (1 - 0,89) = 134 \ 000 \ \text{pascals} = 1,34 \ \text{bar}$ $p_{max} = 0,75 \times 129 \times 26 \times (1 - 0,89) = 277 \ \text{lb/sq. ft.}$ $p_{max} = 19,4 \ \text{p.s.i.}$ Distribution linéaire : $\gamma h = 20 \ 300 \times 8 = 162 \ 000 \ \text{pascals} = 1,62 \ \text{bar},$ $\gamma h = 129 \times 26 = 335 \ \text{lb/sq. ft.} = 23,4 \ \text{p.s.i.}$

CALCUL DU TASSEMENT

Le tassement d'une charge de longueur infinie sur un sol homogène d'épaisseur infinie est infini. Il n'est donc pas possible de faire simultanément les deux hypothèses simplificatrices : longueur infinie de la charge et épaisseur infinie du sol compressible.

Pour faire un calcul direct du tassement, il faudra se reporter :

- soit à la section "Remblai à base rectangulaire sur un sol homogène d'épaisseur infinie" (Section 4-6);
- soit au cas des remblais de grande longueur (théoriquement de longueur infinie) sur une couche de sol d'épaisseur finie (Voir les sections : "Fondation de grande longueur exerçant une charge normale uniforme sur une couche de sol homogène d'épaisseur finie" ou "Remblai de grande longueur et de section triangulaire ou trapézoïdale sur une couche de sol homogène d'épaisseur finie" ou encore "Fondation de grande longueur dont la charge est distribuée de façon quelconque reposant sur une couche de sol homogène d'épaisseur finie"). (Respectivement, Sections 6-5, 6-11 et 6-13).

Section 6-10

Ou bien alors il faudra faire un <u>calcul indirect</u> par l'intermédiaire des contraintes données ci-après.

CALCUL DES CONTRAINTES

a) Remblai triangulaire dissymétrique (Fig. 1 a).

Les contraintes au point de coordonnées (x, z) sont données par :

(2)
$$\begin{pmatrix} \sigma_{z} = \gamma h \left[d_{0} \left(- x/a, z/a \right) + d_{0} \left(x/b, z/b \right) \right] \\ \tau_{zx} = \gamma h \left[- d_{1} \left(- x/a, z/a \right) + d_{1} \left(x/b, z/b \right) \right] \\ \sigma_{x} = \gamma h \left[d_{2} \left(- x/a, z/a \right) + d_{2} \left(x/b, z/b \right) \right] \\ \sigma_{y} = v (\sigma_{x} + \sigma_{z}) \qquad \tau_{xy} = \tau_{yz} = 0 \end{cases}$$

 $\sigma_z = 1,3(0,061 + 0,088) = 0,19$ bar, = 18,8(0,061 + 0,088) = 2,8 p.s.i.

Les valeurs numériques des coefficients $d_0(\xi, \zeta)$, $d_1(\xi, \zeta)$ et $d_2(\xi, \zeta)$ sont données dans des Tables. Les dimensions a, b et h du remblai sont définies sur la figure **1** a.

 γ est le poids volumique du sol en remblai et ν le coefficient de Poisson du sol sous le remblai.

Exemple 1 :

Soit une digue de 6 m (20 ft) de haut, de pente à gauche 1,8/1 et à droite 3/1, et de poids volumique 2,2 g/cm³ (135 lb/cu. ft). Quelle est la valeur de σ_z à 54 m (177 ft) de profondeur à la verticale du pied gauche ?

a = 10,8 m = 35,5 ft b = 18 m = 59 ft x = - 10,8 m = - 35,5 ft z = 54 m = 177 ft. - x/a = 1 z/a = 5 $\Rightarrow d_0 = 0,061$ x/b = - 0,6 z/b = 3 $\Rightarrow d_0 = 0,088$ yh = 2 200 × 9,81 × 6 = 130 000 pascals = 1,3 bar = 135 × 20 = 270 lb/sq. ft = 18,8 p.s.i. d'où :

b) Remblai trapézoidal dissymétrique (Fig. 1 b).

Deux méthodes permettent d'obtenir les contraintes en un point de coordonnées (x, z) :

· Première méthode :

$$\left\{ \begin{array}{l} \sigma_{z} = \frac{\gamma h}{a - a^{\prime}} \left\{ a \left[d_{0} \left(-\frac{x}{a}, \frac{z}{a} \right) + d_{0} \left(\frac{x}{b}, \frac{z}{b} \right) \right] - a^{\prime} \left[d_{0} \left(-\frac{x}{a^{\prime}}, \frac{z}{a^{\prime}} \right) + d_{0} \left(\frac{x}{b^{\prime}}, \frac{z}{b^{\prime}} \right) \right] \right\} \\ \tau_{zx} = \frac{\gamma h}{a - a^{\prime}} \left\{ a \left[- d_{1} \left(-\frac{x}{a}, \frac{z}{a} \right) + d_{1} \left(\frac{x}{b}, \frac{z}{b} \right) \right] - a^{\prime} \left[- d_{1} \left(-\frac{x}{a^{\prime}}, \frac{z}{a^{\prime}} \right) \right] \right\} \\ + \left(d_{1} \frac{x}{b^{\prime}}, \frac{z}{b^{\prime}} \right) \right] \right\} \\ \sigma_{x} = \frac{\gamma h}{a - a^{\prime}} \left\{ a \left[d_{2} \left(-\frac{x}{a}, \frac{z}{a} \right) + d_{2} \left(\frac{x}{b}, \frac{z}{b} \right) \right] - a^{\prime} \left[d_{2} \left(-\frac{x}{a^{\prime}}, \frac{z}{a^{\prime}} \right) + d_{2} \left(\frac{x}{b^{\prime}}, \frac{z}{b^{\prime}} \right) \right] \right\} \\ \sigma_{y} = \nu \left(\sigma_{z} + \sigma_{x} \right) \qquad \tau_{xy} = \tau_{yz} = 0.$$

avec :

6 - 10

γ : poids volumique du sol en remblai,

v : coefficient de Poisson du sol sous le remblai,

a, b, a', b', h : dimensions du remblai définies sur la figure 1 b.

Les valeurs numériques des coefficients sans dimensions $d_0(\xi, \zeta)$, $d_1(\xi, \zeta)$ et $d_2(\xi, \zeta)$ sont données dans des tables. On se reportera à l'exemple 1 pour l'utilisation de ces coefficients.

· Deuxième méthode :

(Notons que les coefficients permettant de donner la contrainte tangentielle τ_{zx} par cette méthode n'ont pas été calculés).

Plusieurs cas sont à distinguer :

1° Point situé sous la plate-forme (Fig. 3) :

(4)
$$\begin{cases} \sigma_{z} = \gamma h \left[k_{z} \left(z/d_{1}, c_{1}/d_{1} \right) + k_{z} \left(z/d_{2}, c_{2}/d_{2} \right) \right] \\ \sigma_{x} = \gamma h \left[k_{x} \left(z/d_{1}, c_{1}/d_{1} \right) + k_{x} \left(z/d_{2}, c_{2}/d_{2} \right) \right] \\ \sigma_{y} = \nu (\sigma_{z} + \sigma_{x}) \quad \text{et} \quad \tau_{xy} = \tau_{yz} = 0. \end{cases}$$

FIG. 3. - Calcul des contraintes en un point M situé entre les verticales de A et B.

avec :

c₁, d₁, c₂, d₂ : distances définies sur la figure 3 ; z : profondeur du point où l'on calcule la contrainte ; k_x, k_z : coefficients sans dimensions donnés dans des tables et graphiques ; γ : poids volumique du sol en remblai ; v : coefficient de Poisson du sol sous le remblai

Exemple 2 :

Quelle est la contrainte σ_z au point M sous le remblai défini sur la figure 4, sachant que le poids volumique du matériau est $\gamma = 1,97$ g/cm³ (123 lb/cu. ft)?

Calculons d'abord : $\gamma h = 1 \ 970 \times 9,81 \times 4 \times 10^{-5} = 0,77 \text{ bar}$ $= 123 \times 13 = 1 \ 600 \ 1b/sq. \text{ ft}$ D'après les notations de la figure 3, on a : $c_1 = 8 \text{ m} (26 \text{ ft})$ $d_1 = 7 \text{ m} (23 \text{ ft})$ d'où : $c_1/d_1 = 1,15$ et $z/d_1 = 1$, ce qui entraîne : $k_z = 0,39$. De même : $c_0 = 4 \text{ m} (13 \text{ ft})$ $d_0 = 5 \text{ m} (16,5 \text{ ft})$

6-1(

FIG. 4. - Définition du remblai de l'exemple 2.

D'où : $c_2/d_2 = 0.8$ et $z/d_2 = 1.4$ ce qui entraîne : $k_z = 0,34$. D'où, en appliquant la première formule (4) : $\sigma_z = 0,77 (0,39 + 0,34) = 0,56$ bar = 1 600 (0,39 + 0,34) = 1 170 lb/sq. ft.

2° Point situé sous l'extérieur du remblai (Fig. 5) :

(5)
$$\begin{cases} \sigma_{z} = \gamma h \left[k_{z} (z/d_{1}, c_{1}/d_{1}) - k_{z} (z/d_{2}, c_{2}/d_{2}) \right] \\ \sigma_{x} = \gamma h \left[k_{x} (z/d_{1}, c_{1}/d_{1}) - k_{x} (z/d_{2}, c_{2}/d_{2}) \right] \\ \sigma_{y} = \nu (\sigma_{z} + \sigma_{x}) \quad \text{et} \quad \tau_{xy} = \tau_{yz} = 0. \end{cases}$$
(Mêmes notations que pour la formule (4)).
3° Point situé sous le talus, mais plus près du sommet (Fig. 6 a) :

$$\begin{cases} \sigma_{z} = \gamma h \quad k_{z} \ (z/d_{1}, c_{1}/d_{1}) + q \ k_{z} \ (z/d_{2}, c_{2}/d_{2}) \\ \sigma_{x} = \gamma h \quad k_{x} \ (z/d_{1}, c_{1}/d_{1}) + q \ k_{x} \ (z/d_{2}, c_{2}/d_{2}) \\ \sigma_{y} = \nu(\sigma_{z} + \sigma_{x}) \quad \text{et} \quad \tau_{xy} = \tau_{yz} = 0. \end{cases}$$

(6)

FIG. 5. - Calcul des contraintes en un point M qui n'est pas situé sous le remblai.

avec :

q : charge se déduisant de γh d'après la figure 6 a. (Les autres notations sont les mêmes que pour la formule (4)). 4° Point situé sous le talus mais plus près de la base (Fig. 6 b) :

(7)
$$\begin{cases} \sigma_{z} = \gamma h \quad k_{z} (z/d_{1}, c_{1}/d_{1}) - q k_{z} (z/d_{2}, c_{2}/d_{2}) \\ \sigma_{x} = \gamma h \quad k_{x} (z/d_{1}, c_{1}/d_{1}) - q k_{x} (z/d_{2}, c_{2}/d_{2}) \\ \sigma_{y} = v(\sigma_{z} + \sigma_{x}) \quad \text{et} \quad \tau_{xy} = \tau_{yz} = 0. \end{cases}$$

avec :

q : charge se déduisant de γh d'après la figure 6 b. (Les autres notations étant les mêmes que pour la formule 4) 5° Point situé à la verticale de la mi-pente (Fig. 6 c). C'est la cas le plus simple.

(8)
$$\begin{cases} \sigma_{z} = pk_{z}(z/d, c/d) \\ \sigma_{x} = pk_{x}(z/d, c/d) \\ \sigma_{y} = v(\sigma_{z} + \sigma_{x}) \text{ et } \tau_{xy} = \tau_{yz} = 0 \end{cases}$$

FIG. 6. - Calcul des contraintes en un point M situé sous le talus.

(a) la verticale de M passe plus près du sommet du talus.

(b) la verticale de M passe plus près de la base.

(c) la verticale de M passe à égale distance de la base et du sommet.

Nota : Dans les cas (a) et (b), les deux petits triangles sont symétriques par rapport à la verticale de M.

c) Remblai triangulaire symétrique (Fig. 2 a).

Plusieurs méthodes sont possibles :

· Première méthode :

Utiliser les formules (2) relatives au remblai triangulaire dissymétrique avec a = b.

· Deuxième méthode :

Utiliser les formules suivantes qui donnent directement les contraintes :

(9)
$$\begin{cases} \sigma_{z} = \gamma h s_{0} \\ \tau_{zx} = \frac{x}{|x|} \gamma h s_{1} \\ \sigma_{x} = \gamma h s_{2} \\ \sigma_{y} = \nu(\sigma_{z} + \sigma_{x}) \quad \text{et} \quad \tau_{xy} = \tau_{yz} = 0 \end{cases}$$

 s_0 , s_1 et s_2 sont des coefficients sans dimensions dont les valeurs numériques sont données dans des tables en fonction de ξ et ζ . avec :

 $\xi = |\mathbf{x}|/a$ et $\zeta = z/a$,

avec :

x et z : coordonnées du point où l'on calcule les contraintes,
|x| : valeur absolue de x,
a, h : dimensions du remblai définies sur la figure 2 a,
γ : poids volumique du sol en remblai,

v : coefficient de Poisson du sol supportant le remblai.

Exemple 3 :

Considérons un remblai de section triangulaire de 7 m (23 ft) de haut et de pente 2/1. Le poids volumique du matériau en remblai est 2,05 g/cm³ (128 lb/sq. ft). Quelle est la contrainte σ_z à 21 m de profondeur sous le bord ?

Calculons d'abord : $\gamma h = 2\ 050 \times 9,81 \times 7 \times 10^{-5} = 1,41$ bar $= 128 \times 23 = 2\ 940\ lb/sq.$ ft.

Par ailleurs : $a = 2 \times 7 = 14 \text{ m} (46 \text{ ft})$ d'où : $\xi = x/a = 1$ et $\zeta = z/a = 1,5$. On lit dans la table : $s_0 = 0,215$ D'où : $\sigma_z = 1,41 \times 0,215 = 0,30 \text{ bar}$ $= 2.940 \times 0,215 = 630 \text{ lb/sq. ft.}$

Troisième méthode :

On peut juger plus proche de la réalité de considérer une distribution parabolique de la charge. Dans ce cas, la charge maximale p_{max} vaut 0,75 yh d'après la formule (1) avec a' = 0 et les formules donnant les contraintes s'écrivent :

(10)
$$\begin{cases} \sigma_{z} = 0,75 \text{ yhp}_{0} \\ \tau_{zx} = \frac{x}{|x|} 0,75 \text{ yhp}_{1} \\ \sigma_{x} = 0,75 \text{ yhp}_{2} \\ \sigma_{y} = v(\sigma_{z} + \sigma_{x}) \text{ et } \tau_{xy} = \tau_{yz} = 0 \end{cases}$$

 p_0 , p_1 et p_2 sont des coefficients sans dimensions dont les valeurs numériques sont données dans des tables en fonction de |x|/a et z/a.

avec :

x, z : coordonnées du point où l'on calcule les contraintes,

|x| : valeur absolue de x,

- a, h : dimensions du remblai définies sur la figure 2 a,
 - γ : poids volumique du sol en remblai,
 - v : coefficient de Poisson du sol supportant le remblai.

Section 6-10

Exemple 4 :

Reprenons l'exemple 3. Quelle est la contrainte dans le cas d'une distribution parabolique de la charge ?

Pour x/a = 1 et z/a = 1,5, on lit dans les tables : $p_0 = 0,290$. D'où : $\sigma_z = 0,75 \times 1,41 \times 0,290 = 0,31$ bar = 0,75 × 2 940 × 0,290 = 640 lb/sq. ft

La différence avec le résultat de l'exemple 3 obtenu avec une distribution triangulaire de la charge est très faible. Ceci est une illustration du principe de St. Venant. La différence serait plus grande pour des points plus proches de la charge.

d) Remblai trapézoidal symétrique (Fig. 2 b).

Plusieurs méthodes sont possibles.

· Première méthode :

Utiliser les formules (3) relatives au remblai trapézoïdal dissymétrique avec a = b et a' = b'.

· Deuxième méthode :

Utiliser les formules suivantes :

(11)
$$\begin{cases} \sigma_{z} = \frac{\gamma h}{a - a'} \left[as_{0}(|x|/a, z/a) - a's_{0}(|x|/a', z/a') \right] \\ \tau_{zx} = \frac{x}{|x|} \frac{\gamma h}{a - a'} \left[as_{1}(|x|/a, z/a) - a's_{1}(|x|/a', z/a') \right] \\ \sigma_{x} = \frac{\gamma h}{a - a'} \left[as_{2}(|x|/a, z/a) - a's_{2}(|x|/a', z/a') \right] \\ \sigma_{y} = v(\sigma_{z} + \sigma_{x}), \quad \tau_{zy} = \tau_{yz} = 0 \end{cases}$$

avec :

a, a', h : dimensions du remblai données sur la figure 2 b, γ : poids volumique du sol en remblai,

v : coefficient de Poisson du sol,

s₀, s₁, s₂ : coefficients sans dimensions dont les valeurs numériques sont données dans des tables en fonction de ξ (égal à |x|/a ou |x|/a') et ζ (égal à z/a ou z/a'), x, z : coordonnées du point où l'on calcule les contraintes, |x| : valeur absolue de x.

Exemple 5 :

6-10

Considérons le remblai défini par la figure 7. Quelle est la contrainte σ_{z} au point P sachant que le poids volumique du matériau en remblai est 1,97 g/cm³ (123 lb/cu. ft) ?

Calculons d'abord γh : $\gamma h = 1 970 \times 9,81 \times 6 \times 10^{-5} = 1,16$ bar $= 123 \times 20 = 2$ 460 lb/sq. ft.

Section 6-10

Ensuite, d'après les notations de la figure 2 b :

a = 29 m (95 ft), a' = 17 m (55 ft), x = -3 m (-10 ft), z = 16 m (52 ft)entraînent :

 $\begin{aligned} |\mathbf{x}|/a &= 0,1 \quad \text{et} \quad z/a &= 0,55, \quad d'où s_0 &= 0,66; \\ |\mathbf{x}|/a' &= 0,18 \quad \text{et} \ z/a' &= 0,95, \quad d'où s_0 &= 0,49. \end{aligned}$ Les formules (11) permettent alors de calculer : $\sigma_z &= \frac{1,16}{12} \left[29 \times 0,66 \rightarrow 17 \times 0,49 \right] = 1,04 \text{ bar}, \\ \sigma_z &= \frac{2,460}{60} \left[95 \times 0,66 \rightarrow 55 \times 0,49 \right] = 2 200 \text{ lb/sq. ft.} \end{aligned}$

Notons au passage que la valeur de τ_{xx} au point P est négative car x/|x| = -1.

• Troisième méthode :

Utiliser les formules (4), (5), (6), (7) ou (8) qui sont valables sans changement d'écriture, que le remblai soit symétrique ou non.

Exemple 6 :

Considérons le remblai routier symétrique défini sur la figure 8. Sachant que le poids volumique du matériau est $\gamma = 1,97$ g/cm³ (123 lb/cu. ft) quelle est la valeur de σ_z aux points M_1 , M_2 , M_3 , M_4 ?

Calculons d'abord :

 $\gamma h = 1.970 \times 9,81 \times 6 \times 10^{-5} = 1,16$ bar

= 123 × 20 = 2 460 lb/sq. ft.

Examinons ensuite les points $\rm M_1$ et $\rm M_2.$ D'après les notations de la figure 3, on a :

c₁ = 12 m (40 ft) et d₁ = 20 m (65 ft); d'où : c₁/d₁ = 0,6 et : z/d₁ = 0,8 pour z = 16 m (52 ft) z/d₁ = 3 pour z = 60 m (196 ft) On en déduit, d'après la table de k_z : k_z = 0,436 pour M₁ et 0,197 pour M₂

GIROUD. - Tables pour le calcul des fondations. Tome 2

FIG. 8. - Définition du remblai de l'exemple 6.

De l'autre côté, on a : $c_2 = 12 \text{ m} (40 \text{ ft})$ et $d_2 = 26 \text{ m} (85 \text{ ft})$, d'où : $c_2/d_2 = 0,46$ et : $z/d_2 = 0,61$ pour z = 16 m (52 ft), $z/d_2 = 2,3$ pour z = 60 m (197 ft). On en déduit, d'après la table de k_z : $k_z = 0,465$ pour M_1 et 0,248 pour M_2 D'où, le calcul de σ_z au point M_1 : $\sigma_z = 1,16 (0,436 + 0,465) = 1,04 \text{ bar}$ = 2,460 (0,436 + 0,465) = 2,200 lb/sq. ft.

Notons que cette valeur est bien la même que celle obtenue dans l'exemple 5 pour le même problème.

Et le calcul de σ_z au point M_2 $\sigma_z = 1,16(0,197 + 0,248) = 0,52$ bar = 2.460(0,197 + 0,248) = 1.100 lb/sq. ft..

Pour les points M_3 et M_4 , nous ne donnons pas le détail des calculs. On pourra vérifier que :

- pour M_3 : $\sigma_z = 1,16(0,494 - 0,324) = 0,197$ bar $\sigma_z = 1,16(0,314 - 0,043) = 0,314$ bar; - pour M_4 : $\sigma_z = 1,16 \times 0,479 = 0,55$ bar.

· Quatrième méthode :

On peut juger qu'il est plus proche de la réalité de considérer une distribution parabolique de la charge. Les formules donnant les contraintes s'écrivent alors :

(12)
$$\begin{cases} \sigma_{z} = p_{\max} p_{0} \\ \tau_{zx} = \frac{|x|}{x} p_{\max} p_{1} \\ \sigma_{x} = p_{\max} p_{2} \\ \sigma_{y} = \nu(\sigma_{z} + \sigma_{x}) \text{ et } \tau_{xy} = \tau_{yz} = 0. \end{cases}$$

 p_0 , p_1 et p_2 sont des coefficients sans dimensions dont les valeurs numériques sont données dans des tables en fonction de |x|/a et z/a, avec :

p_{max} : contrainte définie par la formule (1). Noter que cette définition n'est possible que si a' < a/3 sinon l'emploi des formules (12) est impossible ;

x, z : coordonnées du point où l'on calcule les contraintes ;

- a, a', h : dimensions du remblai définies par la figure 2 b ;
 - v : coefficient de Poisson du sol supportant le remblai.

On pourra se reporter à l'exemple 4 pour voir une application numérique.

417

TABLES ET GRAPHIQUES

$Coefficients: d_0, d_1, d_2 \dots \dots \dots \dots$	 p. 419-421
S_0, S_1, S_2	 p. 422-424
$p_0, p_1, p_2 \ldots \ldots \ldots$	 p. 425-427
$k_x, k_z \ldots \ldots \ldots$	 p. 428-430

d	0			⇒×⇒	к ж		7K	<u></u> ж	— ж —— ж	ξ	<u>с</u> ж		××	×~		ж		****
	0	- 40	-10	- 6	- 3	- 2	-1	-0,6	-0,2	0	0,2	0,6	1	2	3	6	10	4 0
Ĩ	0 0,2 0,4 0,6	000.0 000.0 000.0 000.0	C.CCC C.CCC C.CCC C.CCC	0.000 0.000 0.000 0.000	0.0CC C.0CC G.0CC C.0CC	0.000 0.000 0.001 0.002	0.000 0.001 0.007 0.018	0.000 0.005 0.028 0.058	0.000 0.078 0.173 0.205	0.500 0.437 0.379 0.328	0.800 0.697 0.527 0.414	0.400 0.395 0.372 0.334	0.00C 0.061 0.110 0.140	0.000 0.000 0.003 0.008	0.000 0.000 0.000 0.000 0.001	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000	0.000 -0.000 -0.000 -0.000
X	0,8 1,0 1,2 1,4	0.000 0.000 0.000 0.000	C.CCC C.CCC C.CCC C.CCC	C.CCC C.CCC C.CCC C.CCC	C.0C1 0.0C2 C.004 0.0C5	C.005 0.008 0.012 0.017	0.032 0.046 0.057 0.066	0.083 0.100 0.109 0.112	0.207 0.198).185 0.172	0.285 0.250 0.221 0.197	0.337 0.283 0.243 0.213	0.294 0.258 0.227 0.202	0.155 0.159 0.157 0.151	0.016 0.025 0.034 0.041	C.003 C.005 O.008 C.011	0.000 0.000 0.000 0.001	0.000 0.000 0.000 0.000	0.000 0.000 0.000
5	1,6 1,8 2 3	0.000 0.000 0.000 0.000	C.CCC C.CCC C.CCC C.CC1	C.CC1 C.CC1 C.CC1 C.CC4	0.0C7 0.0C9 C.011 C.C22	0.021 0.025 0.029 0.042	0.072 0.076 0.078 0.074	0.113 0.111 0.108 0.088	0.159 0.147 0.137 0.099	0.178 0.161 0.148 0.102	0.189 0.170 0.154 0.104	0.182 0.164 0.150 0.103	0.143 0.135 0.127 0.095	0.048 0.053 0.057 0.062	C.015 0.018 C.021 0.033	0.001 0.002 0.002 0.005	0.000 0.000 0.000 0.001	0.000 0.000 0.000 0.000
Ì	4 5 6 8	0.000 0.000 0.000 0.000	C.CO1 C.CC2 C.CC3 C.CG6	C.CO7 C.CC9 C.C12 C.C15	0.028 C.031 C.031 0.029	0.044 0.043 0.040 C.034	0.064 0.055 0.048 0.038	0.071 0.059 0.050 0.039	0.076 0.062 0.052 0.039	0.078 0.063 0.053 0.040	0.079 0.063 0.053 0.040	0.078 0.063 0.053 0.040	0.075 0.061 0.052 0.039	0.058 0.051 0.046 0.037	0.038 0.039 0.037 C.037	0.009 0.012 0.015 0.018	0.002 0.003 0.004 0.007	0.000 0.000 0.000 0.000
Ď	10 20 40 100	0.00C 0.001 0.002 0.602	C.CC7 C.C1C C.CC7 C.CC3	C.C16 C.C13 C.CC8 C.CC3	0.026 C.015 C.0C8 O.0C3	0.029 0.015 C.008 C.003	0.031 0.016 0.008 0.003	0.031 0.016 0.008 0.003	0.032 0.016 0.008 0.003	0.032 0.016 0.008 0.003	0.032 0.016 0.008 0.003	0.032 0.016 0.008 0.003	0.032 0.016 0.008 0.003	0.030 0.016 0.008 0.003	0.028 0.015 0.008 0.003	0.018 0.014 0.008 0.003	0.009 0.010 0.007 0.003	0.000 0.001 0.002 0.002

6-10

d	4				к <u> </u>		жж	ж		ξ	кж		**	×~	жж	×~		Ň
	1	- 40	-10	- 6	- 3	- 2	- 1	-0,6	-0,2	0	0,2	0,6	1	2	3	6	10	40
Ď	0 0,2 0,4 0,6	0.000 -0.00C -0.00C -0.00C	C.COC -C.CCC -C.CCC -C.CCC	0.000 -0.000 -0.000 -0.000	0.000 -0.000 -0.001 -0.003	0.000 -0.001 -0.004 -0.008	0.000 -0.006 -0.021 -0.037	0.000 -0.019 -0.054 -0.078	0.000 -0.120 -0.155 -0.136	-0.318 -0.231 -0.167 -0.122	0.000 -0.025 -0.055 -0.048	0.000 0.118 0.127 0.103	0.000 0.075 0.168 0.113	0.000 0.003 0.011 0.021	0.000 0.001 C.003 C.006	0.000 0.000 0.000 0.001	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000
ž	0,8 1,0 1,2 1,4	-0.000 -0.000 -0.000 -0.000	-C.CCC -C.CCC -C.CCC -G.CG1	-C.CC1 -C.CC1 -C.CC2 -C.CC2	-0.005 -0.007 -0.010 -0.012	-0.013 -0.018 -0.023 -0.027	-0.049 -0.057 -0.060 -0.059	-0.086 -0.084 -0.078 -0.070	-0.112 -0.090 -0.073 -0.059	-0.090 -0.068 -0.053 -0.042	-0.037 -0.028 -0.022 -0.017	0.078 0.059 0.045 0.036	0.1C4 0.091 0.078 0.066	0.031 0.039 0.044 0.047	C.009 C.013 O.017 C.021	0.001 0.002 0.002 0.003	0.000 0.000 0.000 0.000 0.001	0.000 0.000 0.000 0.000
5	1,6 1,8 2 3	-0.000 -0.000 -0.000 -0.000	-C.CC1 -C.CC1 -C.CC1 -C.CC2	-0.003 -0.003 -0.004 -0.004	-0.015 -0.017 -0.019 -C.C24	-0.030 -0.032 -0.033 -0.032	-0.057 -0.054 -0.050 -0.032	-0.062 -0.054 -0.048 -0.027	-0.049 -0.041 -0.035 -0.017	-0.034 -0.028 -0.023 -0.011	-0.014 -0.011 -0.009 -0.004	0.028 0.023 0.019 0.009	0.056 0.047 0.041 0.021	0.048 0.047 0.046 0.034	C.024 O.026 O.028 O.029	0.004 0.005 0.006 0.010	0.001 0.001 0.001 0.003	0.000 2.003 0.003 J.333
Ň	4 5 6 8	-0.000 -0.005 -0.000 -0.000	-C.CC3 -C.CC5 -C.CC6 -C.CC7	-C.C1C -O.C12 -C.C13 -C.C12	- C. C23 -0.02C -C.017 -0.012	-0.026 -0.020 -0.015 -0.010	-0.021 -0.015 -0.011 -0.006	-0.016 -0.011 -0.008 -0.034	-0.010 -0.007 -0.005 -0.003	-0.004 -0.003 -0.002	-0.003 -0.002 -0.001 -0.001	0.005 0.003 0.002 0.001	0.012 0.008 0.006 0.003	0.024 0.017 0.013 0.0C8	C.025 0.020 C.016 C.011	0.012 0.014 0.014 0.012	0.004 0.005 0.007 0.008	0.000 0.000 0.000 0.000
<u> </u>	10 20 40 100	-0.000 -0.001 -0.002 -0.001	-C.CC8 -C.CC5 -C.CC2 -C.CCC	-C.C1C -C.CC4 -C.CC1 -C.CCC	-0.009 -0.003 -0.001 -0.000	-0.007 -0.002 -0.000 -0.000	-0.004 -0.001 -0.000 -0.000	-0.003 -0.001 -0.000 -0.000	-0.002 00000- 00000- 00000- -0.000	-0.001 -0.000 -0.000 -0.000	-0.000 -0.000 -0.000 -0.000	0.001 0.000 0.000 0.000	0.002 0.001 0.000 0.000	0.005 0.001 0.000 0.000	0.007 C.002 C.CC1 0.000	0.010 0.004 0.001 0.000	0.008 0.005 0.002 0.000	0.000 J.J01 0.002 0.001

C	~	- x			кж		ж——ж	ж	_ж>	* ξ	Kai marka	—ж	ж ж	ж		ж		*
	2	- 40	-10	- 6	- 3	- 2	-1	-0,6	-0,2	0	0,2	0,6	1	2	3	6	10	40
Ň	0 0,2 0,4 0,6 0,8 1,0 1,2 1,4	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	C.CCC C.CC1 C.CC1 C.CC2 C.CC2 C.CC3 C.CC3 C.CC3 C.CC4	C.CCC C.CC2 C.CC3 O.CC5 C.CC6 C.CC6 C.CC8 C.CC9 G.C10	0.000 0.006 0.011 0.016 0.021 0.024 0.027 0.029	0.000 0.012 0.023 0.032 0.038 0.042 0.044 0.044	0.000 0.037 0.064 0.076 0.078 0.072 0.064 0.055	D.000 0.077 0.111 0.109 0.093 0.074 0.058 D.046	0.000 0.210 0.163 0.108 0.072 0.049 0.034 0.034 0.025	D -500 0 -230 0 -127 0 -074 0 -046 0 -029 0 -020 D -014	0.800 0.242 0.096 0.048 0.026 0.016 0.010 0.007	0.400 0.249 0.140 0.078 0.045 0.027 0.018 0.012	0.000 0.146 0.142 0.113 0.084 0.061 0.045 0.033	0.000 0.024 0.043 0.056 0.061 0.062 0.059 0.054	0.000 0.009 0.018 0.025 0.031 0.035 0.037 0.039	0.000 0.002 0.004 0.006 0.008 0.009 0.011 0.012	0.000 0.001 0.001 0.002 0.003 0.003 0.003 0.004 0.005	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
s ×	1,6 1,8 2 3	0.000 0.000 0.000 0.001	C.CC5 C.CO5 C.CO6 C.CC8	C.C11 C.C12 C.C13 C.C16	C.030 C.031 O.031 C.026	0.043 0.041 0.039 0.025	0.047 0.039 0.033 0.014	0.036 0.028 0.023 0.009	0.018 0.014 0.013 0.004	0.010 0.007 0.006 0.002	0.005 0.003 0.003 0.001	0.008 0.006 0.005 0.001	0.025 0.019 0.015 0.005	0.049 0.043 0.038 0.019	0.039 0.038 0.037 0.026	0.014 0.015 0.016 0.018	0.005 0.006 0.006 0.009	0.000 0.000 0.000 0.001
Ŭ	4 5 6 8	0.001 0.001 0.001 0.001	C.CO9 C.C10 C.C10 C.CC9	C.C16 C.C15 C.C13 C.CC9	0.019 0.013 0.010 0.005	0.015 0.009 0.006 0.003	0.007 0.004 0.002 0.001	0.004 0.002 0.001 0.001	0.002 0.001 0.000 0.000	0.001 0.000 0.000 0.000	0.000.0 000.0 000.0 0.000	0.001 0.000 0.000 0.000	0.002 0.001 0.001 0.000	0.010	0.017 0.011 0.007 0.004	0.018 0.016 0.013 0.009	0.010 0.011 0.011 0.010	0.001 0.001 0.001 0.001
Ĵ	10 20 40 100	0.002 0.003 0.002 0.000	C.CC8 C.CC3 C.CCC C.CCC	0.006 C.CO1 C.CCC C.CCC	0.003 0.000 0.000 0.000	0.002 0.000 0.000 0.000	0.001 0.000 0.000 0.000	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000	000.0 000.0 000.0	0.000 0.000 0.000 -0.000	0.000 0.000 0.000 -0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.002	0.000	0.008	0.002 0.003 0.002 0.003

A CONTRACTOR OF A CONTRACTOR OF

6-10

S		¥		кж	XK	жж	ж			5	к <u>ж</u> ж	ж		×		икж	=>
	9	0	0,2	0,4	0,6	0,8	1,0	1,2	1,6	2	3	4	6	8	10	20	40
Ň	0 0,2 0,4 0,6	1.000 C.874 C.758 C.656	0.800 C.775 O.700 C.618	0.600 0.593 0.564 C.520	0.400 0.401 0.400 0.392	0.200 0.211 0.240 0.264	0.000 0.062 0.117 0.158	0.000 0.013 0.049 0.088	0.000 0.002 0.011 0.028	0.000 0.001 0.004 0.011	0.000 0.000 0.001 0.002	0.000 0.000 0.000 0.001	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000
¥	0,8 1,0 1,2 1,4	C.57C C.500 C.442 C.395	C.544 O.481 C.429 C.385	0.473 0.430 0.391 0.356	0.377 0.358 0.336 0.315	0.276 0.278 0.274 0.266	0.187 0.205 0.214 0.216	0.121 0.145 0.161 0.171	0.048 0.068 0.086 0.101	0.021 0.033 0.046 0.058	0.004 0.007 0.012 0.016	0.001 0.002 0.004 0.006	0.000 0.000 0.001 0.001	0.000 0.000 0.000 C.000	0.000 0.000 0.000 0.000	0.000	0.000 0.000 0.000 0.000
2	1,6 1,8 2,0 3,0	C.356 C.323 C.295 C.205	0.348 0.317 0.251 0.2C3	0.326 0.300 0.278 0.199	0.294 0.275 0.257 C.191	0.255 0.244 0.232 0.181	0.215 0.211 0.205 0.170	0.176 0.178 0.177 0.157	0.112 0.120 0.126 0.130	0.069 0.078 0.086 0.104	0.022 0.027 0.033 0.055	0.008 0.011 0.014 0.029	0.002 0.003 0.003 0.009	0.001 0.001 C.001 0.003	0.000 0.000 0.000 0.001	0.000 0.000 0.000 0.000	0.000
Ì	4 5 6 8	C.156 C.126 C.1C5 C.C79	C.155 C.125 C.1C5 C.C79	0.153 0.124 0.104 0.079	0.150 0.122 0.103 0.078	0.145 0.120 0.102 0.078	0.139 0.117 0.100 0.077	0.133 0.113 0.097 0.076	0.118 0.104 0.092 0.073	0.102 0.094 0.086 0.070	0.066 0.069 0.068 0.061	0.041 0.048 0.051 0.051	0.015 0.022 0.027 0.033	0.006 0.010 0.014 0.020	0.003 0.005 0.007 0.012	0.000 0.000 0.001 0.002	0.000 0.000 0.000 0.000
, where the second seco	10 20 40 100	C.C63 C.C32 C.C16 C.CC6	C.C63 C.C32 C.C16 C.CC6	0.063 0.032 0.016 0.006	0.063 0.032 0.016 0.006	0.063 0.032 0.016 0.006	0.062 0.032 0.016 0.006	0.062 0.032 0.016 0.006	0.060 0.031 0.016 0.006	0.059 0.031 0.016 0.006	0.054 0.030 0.016 0.006	0.047 0.029 0.016 0.006	0.034 0.027 0.015 0.006	0.024 0.024 0.015 0.006	0.016 0.020 0.014 0.006	0.003 0.008 0.010 0.006	0.000 0.001 0.004 0.005

the state

.

S	4	×		ік—— же	—×к—	ж—— ж	ж		2007	5	×	×<	******	<u> </u>			
	1	0	0,2	0,4	0,6	0,8	1,0	1,2	1,6	2	3	4	6	8	10	20	4 0
ľ	0	C.CCC	C.CCC	0.000	C.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0,2	C.COO	C.CS5	0.130	0.137	0.126	0.081	0.035	0.010	0.004	0.001	0.000	0.000	0.000	0.000	0.000	0.000
	0,4	C.CCC	C.1CC	0.161	0.181	0.169	0.128	0.082	0.032	0.015	0.004	0.002	0.000	0.000	0.000	0.000	0.000
	0,6	C.CCC	C.C89	0.152	0.181	0.177	0.149	0.112	0.056	0.030	0.009	0.004	0.001	0.000	0.000	0.000	0.000
ž	0,8	c.coc	C.C75	0.132	0.164	0.169	0.153	0.127	0.076	0.044	0.014	0.006	0.002	0.001	0.000	0.000	0.000
	1,0	c.coc	0.G62	0.112	0.143	0.154	0.148	0.131	0.089	0.057	0.021	0.009	0.003	0.001	0.001	0.000	0.000
	1,2	c.ccc	C.C51	0.094	0.123	0.137	0.137	0.128	0.096	0.067	0.027	0.013	0.004	0.002	0.001	0.000	0.000
	1,4	c.ccc	C.C42	C.078	0.105	0.121	0.125	0.121	0.099	0.074	0.033	0.016	0.005	0.002	0.001	0.000	0.000
\sim	1,6 1,8 2,0 3,0	0.000 c.ccc c.ccc c.ccc	C.C35 C.C30 C.C25 C.C13	0.066 0.056 0.048 0.025	0.090 0.078 0.067 0.036	0.106 0.093 0.081 0.045	0.113 0.101 0.090 0.053	0.112 0.103 0.094 0.059	0.098 0.095 0.091 0.065	0.078 0.079 0.079 0.066	0.038 0.043 0.046 0.053	0.020 0.023 0.026 0.037	0.007 0.008 0.010 0.017	0.003 0.004 0.004 0.009	0.002 0.002 0.002 0.005	0.000 0.000 0.000 0.001	0.000
ľ	4	C.CCC	C.CC7	0.015	0.022	0.028	0.033	0.038	0.046	0.049	0.048	0.040	0.023	0.013	0.008	0.001	0.000
	5	C.CCC	C.CC5	0.010	0.014	0.019	0.023	0.026	0.033	0.037	0.041	0.038	0.026	0.016	0.010	0.002	0.000
	6	C.CCC	C.CC3	0.007	0.010	0.013	0.016	0.019	0.024	0.028	0.034	0.034	0.027	0.018	0.012	0.D02	0.000
	8	0.COO	C.CC2	0.004	0.006	0.008	0.010	0.011	0.015	0.017	0.023	0.025	0.024	0.020	0.015	0.004	0.001
Ŭ	10	C.COC	C.CCC	0.003	0.004	0.005	0.006	0.007	0.010	0.012	0.016	0.019	0.021	0.019	0.016	0.005	0.001
	20	C.CCC	C.CCC	0.001	0.001	0.001	0.002	0.002	0.003	0.003	0.005	0.006	0.008	0.009	0.010	0.008	0.003
	40	C.CCO	C.CCC	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.002	0.002	0.003	0.004	0.005	0.004
	100	C.CCC	C.CCC	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.002

Section 6-10

ŝ,

6-1

6-10

S	S ₂	×		к сто якс		ж—— ж	ж		ž	5	ĸ		ж —— ж	×ĸ		к сто жс	
	Z	0	0,2	0,4	0,6	0,8	1,0	1,2	1,6	2	3	4	6	8	10	20	40
Ĩ	0 0,2 0,4 0,6	1.CCC C.460 C.253 C.148	C.ECC C.453 C.259 C.156	0.6C0 0.403 0.261 0.172	0.400 0.325 0.251 0.187	0.200 0.247 0.233 0.194	0.000 0.183 0.236 0.190	0.000 0.122 0.169 0.173	0.000 0.060 0.103 0.125	0.000 0.036 0.066 0.087	0.000 0.015 0.029 0.041	0.000 0.008 0.016 0.023	0.000 0.004 0.007 0.011	0.000 C.002 0.004 0.006	0.000 0.001 0.003 0.004	0.000 0.000 0.001 0.001	0.000
ž	0,8 1,0 1,2 1,4	C.C91 C.C59 C.C39 C.C27	C.C58 C.C65 C.C44 C.C31	0.117 0.081 0.058 0.042	0.138 0.102 0.076 0.058	0.155 0.121 0.094 0.074	D.162 D.134 D.109 D.088	0.159 J.138 0.117 0.098	0.131 0.127 0.117 0.105	0.099 0.104 0.103 0.099	0.051 0.059 0.065 0.068	0.030 0.036 0.041 0.045	0.014 0.017 0.020 0.023	0.008 0.010 0.011 0.013	0.005 0.006 0.007 0.009	0.001 0.002 0.002 0.002	0.000 0.000 0.000 0.000
2	1,6 1,8 2,0 3,0	C.C2C C.C15 C.C11 C.CC4	C.C23 C.C17 C.C13 C.CC4	0.032 0.024 0.019 0.007	0.044 0.035 0.027 0.010	0.058 0.046 0.037 0.014	0.071 0.058 0.048 0.020	0.082 0.068 0.057 0.025	0.093 0.081 0.071 0.035	0.092 0.084 0.076 0.044	0.069 0.069 0.068 0.052	0.048 0.050 0.051 0.049	0.025 0.027 0.029 0.034	0.015 0.016 0.018 0.023	0.010 0.011 0.012 0.016	0.003 0.003 7.003 0.005	0.001 0.001 0.001 0.001 0.001
Ĩ	4 5 6 8	C.CC2 C.CC1 C.CCC C.CCC	C.CC2 C.CC1 C.CC1 C.CCC	0.0C3 C.0C2 0.0C1 0.0CC	0.005 0.002 0.001 0.001	0.007 0.004 0.002 0.001	0.009 0.005 0.003 0.031	0.012 0.007 0.004 0.002	0.019 0.011 0.007 0.003	0.025 0.015 0.010 0.004	0.036 0.024 0.017 0.009	0.039 0.030 0.022 0.013	0.034 0.031 0.026 0.018	0.026 0.026 C.024 0.020	0.019 0.020 0.021 0.019	0.006 0.007 0.038 0.009	0.002 0.002 0.002 0.003
	10 20 40 100	c.ccc c.ccc c.ccc c.ccc	C.CCC C.CCC C.CCO C.CCO	C.OCC C.OCO O.OCO C.OCO	C.000 C.000 D.000 O.000	0.000 0.000 0.000 0.000	0.001 0.000 0.000 0.000	0.001 0.000 0.000 0.000	0.002 0.000 0.000 0.000	0.002 0.000 0.000 0.000	0.005 0.001 0.000 0.000	0.008 0.001 0.000 0.000	0.012 0.0C2 0.000 0.0C0	0.015 0.004 0.001 0.000	0.016 0.005 0.001 0.000	0.010 0.008 0.003 0.000	0.004 0.005 0.004 0.001

Chapitre 6

p		×			×ĸ	ж	——————————————————————————————————————		x	/a	кж	ж	ж — ж			н с	 >
	0	0	0,2	0,4	0,6	0,8	1,0	1,2	1,6	2	3	4	6	8	10	2 0	4 0
Ť	0 0,2 0,4 0,6 0,8 1,0 1,2 1,4	1.000 0.967 0.851 0.802 0.715 0.637 0.569 0.512	C.\$6C C.\$27 C.£55 0.771 C.6£\$ C.617 C.554 C.554	0.840 0.809 0.747 0.680 0.617 0.561 0.511 0.467	0.640 0.615 0.577 0.542 0.509 0.477 0.446 0.416	0.360 0.356 0.370 0.382 0.385 0.380 0.369 0.356	0.000 0.109 0.185 0.235 0.267 0.284 0.292 0.292	0.000 0.021 0.078 0.132 0.173 0.203 0.222 0.233	0.000 0.003 0.016 0.041 0.069 0.096 0.120 0.138	0.000 0.001 0.005 0.015 0.029 0.046 0.064 0.064	0.000 0.000 0.001 0.003 0.006 0.010 0.016 0.022	0.000 0.000 0.001 0.002 0.003 0.005 0.005	0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
× 2/a ×	1,6 1,8 2,0 3,0	C.464 C.423 C.388 C.271	C.455 O.416 C.382 O.269	0.429 0.395 0.366 0.263	C.389 J.364 O.340 G.253	0.340 0.324 0.309 0.241	0.288 0.282 0.273 0.225	0.238 0.239 0.237 0.209	0.153 0.163 0.170 0.173	0.094 0.107 0.116 0.139	0.030 0.037 0.044 0.074	0.011 0.015 0.018 0.038	0.002 0.003 0.004 0.012	0.001 0.001 0.002 C.004	0.000 0.000 0.001 0.002	0.000	0.000 0.000 0.000 0.000
ž	4 5 6 8	C.167 C.140 C.1C5	C.167 C.14C C.1C5	0.165 0.139 0.105	0.163 0.137 0.104	0.195 0.159 0.135 0.103	0.155 0.133 0.102	0.150 0.130 0.101	0.139 0.123 0.123 0.398	0.126 0.114 0.094	0.092 0.091 0.081	0.054 0.068 0.068	0.029 0.036 0.044	0.014 0.019 0.027	0.007 0.010 0.016	0.001 0.001 0.002	0.000
Ĭ	10 20 40 100	C.C85 C.O42 C.C21 O.CC8	C.C84 O.C42 C.C21 C.CC8	0.084 0.042 C.021 0.008	0.084 0.042 0.021 0.008	0.083 0.042 0.021 0.008	0.083 0.042 0.021 0.038	0.082 0.342 0.321 0.008	0.080 0.042 0.021 0.008	0.078 D.042 D.021 0.008	0.071 0.041 0.021 0.008	0.063 0.039 0.021 0.008	0.046 0.036 0.020 0.008	0.032 0.032 0.020 0.008	0.021 0.027 0.019 0.008	0.003 0.011 0.014 0.008	0.0002 0.005 0.005 0.005

p		×	→ĸ>	к <u></u> ж-	×ĸ		ж		x	a	керанка Карака					к	=>
	1	0	0,2	0,4	0,6	0,8	1,0	1,2	1,6	2	3	4	6	8	10	20	40
Ď	0 0,2 0,4 0,6	0.000 0.000 0.000 0.000	C.CCC C.CCC C.CES C.CEE	0.000 0.116 0.160 0.164	0.000 0.162 0.214 0.215	0.000 0.181 0.226 0.228	0.000 0.129 0.184 0.203	0.000 0.054 0.119 0.157	0.000 0.014 0.046 0.079	0.000 0.006 0.021 0.041	0.000 0.001 0.006 0.012	0.000 0.001 0.002 0.005	0.000 0.000 0.001 0.001	0.000 0.000 C.000 C.001	0.000 0.000 0.000 0.000	0.000 9.000 0.000 0.000	0.000 0.000 0.000 0.000
Į	0,8 1,0 1,2 1,4	C.CCC C.CCC C.CCC C.CCC	C.C81 C.C71 C.C61 C.C51	C.151 O.132 C.114 O.097	0.198 0.175 0.153 0.132	0.215 0.195 0.174 0.154	0.203 0.193 0.178 0.162	0.172 0.174 0.168 0.159	0.105 0.121 0.130 0.132	0.061 0.078 0.091 0.099	0.020 0.028 0.037 0.045	0.008 0.013 0.017 0.022	0.003 0.004 0.005 0.007	0.001 0.002 0.002 0.003	0.001 0.001 0.001 0.002	0.000 0.000 0.000 0.000	0.000
Za	1,6 1,8 2,0 3,0	0.000 0.000 0.000 0.000	C.C44 C.C37 C.C32 C.C16	0.083 0.071 0.061 0.032	C.114 O.099 O.086 O.047	0.135 0.119 0.105 0.059	0.146 0.131 0.117 0.070	0.147 0.135 0.123 0.077	0.131 0.126 0.120 0.086	0.104 0.106 0.105 0.087	0.052 0.058 0.062 0.071	0.026 0.031 0.035 0.050	0.009 0.011 0.013 0.023	C.004 O.005 O.006 O.012	0.002 0.003 0.003 0.006	0.000 0.000 0.000 0.001	0.000 0.000 0.000 0.000
Ĩ	4 5 6 8	C.CCC C.CCC C.CCC C.CCC	C.C1C C.CC6 C.CC5 C.CC3	0.019 0.013 0.009 0.005	0.028 0.019 0.013 0.008	0.037 0.025 0.018 0.010	0.044 0.030 0.022 0.013	0.051 0.035 0.025 0.015	0.060 0.043 0.032 0.019	0.065 0.049 0.037 0.023	0.064 0.054 0.045 0.030	0.053 0.050 0.045 0.034	0.030 0.034 0.035 0.032	0.017 0.022 0.025 C.027	0.010 0.014 0.017 0.020	0.002 0.002 0.003 0.005	0.000 0.000 0.000 0.000 0.001
Ŭ	10 20 40 100	C.CCC C.CCC C.CCC C.CCC C.CCC	C.CC2 C.CCC C.CCC G.CCD	0.0C3 C.0C1 0.0C0 0.0C0	0.005 0.001 0.000 0.000	0.007 0.002 0.000 0.000	0.008 0.002 0.001 0.005	0.010 0.003 0.001 0.001	0.013 0.003 0.001 0.000	0.016 0.004 0.001 0.000	0.021 0.006 0.002 0.000	0.025 0.008 0.002 0.000	0.027 0.011 0.003 0.001	0.025 0.013 0.004 0.001	0.021 0.014 0.005 0.001	0.007 0.011 0.007 0.002	0.001 0.003 0.005 0.003

p		ĸ		к сс экс	—ж	жж	ж		×	a	×	жк	ж	ж		кж	
	2	0	0,2	0,4	0,6	0,8	1,0	1,2	1,6	2	3	4	6	8	10	20	40
Ď	0	1.COC	C.960	0.840	0.640	0.360	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0,2	C.597	C.577	0.518	0.432	0.339	0.262	0.175	0.083	0.049	0.020	0.011	0.005	0.003	0.002	0.000	0.000
	0,4	C.358	C.351	0.335	0.316	0.299	0.276	0.231	0.141	0.090	0.039	0.022	0.010	C.005	0.003	0.001	0.000
	0,6	C.218	C.22C	0.225	0.235	0.246	0.247	0.230	0.169	0.118	0.055	0.032	0.014	0.008	0.005	0.001	0.000
Ĩ	0,8	C.138	C.143	0.156	0.176	0.196	0.208	0.208	0.175	0.134	0.069	0.040	0.018	0.010	0.007	0.002	0.000
	1,0	C.C90	C.C96	0.111	0.132	0.155	D.172	0.18)	0.168	0.139	0.079	0.048	0.023	0.013	0.008	0.002	0.001
	1,2	C.C61	C.C66	0.080	0.100	0.122	0.140	0.152	0.154	0.137	0.086	0.055	0.027	0.015	0.010	0.003	0.001
	1,4	C.C43	C.C47	0.059	0.077	0.096	0.114	0.128	0.138	0.131	0.091	0.060	0.030	0.018	0.011	0.003	0.001
z/a	1,6	C.C31	0.C35	0.045	0.060	0.077	0.093	0.107	0.122	0.122	0.092	0.064	0.033	C.020	0.013	0.003	0.001
	1,8	C.C23	C.C26	0.034	0.047	0.061	0.076	0.090	0.107	0.111	0.092	0.067	0.036	0.022	0.014	0.004	0.001
	2,0	C.C17	C.O20	0.027	0.037	0.050	0.063	0.075	0.093	0.101	0.090	0.068	0.039	0.024	0.016	0.004	0.001
	3,0	C.CC6	C.CC7	0.010	0.014	0.020	0.026	0.033	0.047	0.058	0.069	0.065	0.045	0.031	0.022	0.006	0.002
Ì	4	C.CO3	C.CC3	0.004	0.006	0.009	0.013	0.)17	0.025	0.033	0.048	0.052	0.045	0.034	0.025	0.008	0.002
	5	C.CO1	C.CC2	0.002	0.003	0.005	0.007	0.009	0.015	0.020	0.032	0.040	0.041	0.034	0.027	0.009	0.003
	6	C.CC1	C.CC1	0.001	0.002	0.003	0.004	0.006	0.009	0.013	0.022	0.030	0.035	0.033	0.028	0.011	0.003
	8	C.CC0	C.CC0	0.001	0.001	0.001	0.002	0.003	0.004	0.006	0.011	0.017	0.024	C.026	0.025	0.013	0.003
¥.	10	C.CCC	0.000	0.000	0.000	0.001	0.001	0.001	0.002	0.003	0.006	0.010	0.016	0.020	0.021	0.014	0.005
	20	C.CCC	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.005	0.007	0.011	0.007
	40	C.CCC	0.000	0.000	0.000	0.000	0.000	0.000	D.000	0.000	0.000	0.000	0.000	0.001	0.001	0.003	0.005
	100	-C.CCC	-0.000	-0.000	-0.000	-0.000	-D.000	-3.000	-0.000	-0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001

Va	leurs	de	c⁄d					
2	1,3	1,4	1,5	1,6	1,7	1,8	1,9	2
00	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500
00	0.499	0.499	0.499	0.499	0.498	0.496	0.493	0.484
96	0.496	0.495	0.494	0.492	0.489	0.484	0.478	C.468
90	0.488	0.486	0.483	0.480	0.475	0.469	0.462	0.453
79	0.477	0.474).470	0.466	0.46)	0.454	0.446	0.437
67	0.463	0.460	0.455	0.450	0.444	0.438	0.430	C.422
52	0.448	0.444	0.440	0.434	0.429	0.422	C.415	0.407
37	0.433	0.429	0.424	0.419	0.413	0.407	O.4CO	0.393
21	0.417	0.413	0.408	0.403	0.398	0.392	O.385	0.379
05	0.401	0.397	0.393	0.388	0.383	0.377	C.371	0.365
89	0.386	0.382	0.378	0.373	0.368	0.363	G.358	0.352
59	0.356	0.353	0.349	0.345	0.341	0.337	C.333	0.328
32	0.329	0.326	0.323	0.320	0.317	0.313	0.309	0.306
19	0.317	0.314	0.311	0.308	0.305	0.302	0.299	0.295
07	0.305	0.303	0.300	0.297	0.294	0.292	C.288	0.285
85 65	0.283	0.281	0.279	0.277	0.274	0.272	C.269 C.252	0.267

0.240

0.219

0.190

0.149

0.122

0.063

0.032

0.239

0.218

0.189

0.149

0.122

0.063

0.032

0.237

0.216

0.188

0.148

0.121

0.063

0.032

0.235

0.215

0.187

0.148

0.121

0.063

0.032

 $^{2}/d$

۵

0.1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

1,2

1,4 1,5

1,6

1,8

2,0

2,2

2,5

3

4

5

10

20

0,5

C. 5CC

C.5CC

C.498

C.494

C.487

C.478

C.466

C.452

6.437

C.422

C.4C6

C.375

C.345

C.331

C.318

C.295

C.273

C.254

C.23C

C.197

C.153

C.124

C.C63

C.C32

6-10

1

C.50C

C.5CC

C.497

C.492

(.483

6.471

C.458

(.443

C.427

C.411

C.395

C.365

C.337

C.324

C.311

C.289

C.268

C.25C

C.227

C.195

C.152

C.123

C.063

C.032

0

C.5CC

0.498

C.495

C.489

6.480

C.468

C.455

......

C.425

6.469

0.378

0.348

C.334

6.321

C.297

C.275

6.256

C.231

C.198

C.153

C.124

C.C63

C.C32

1,2

0.500

0.500

0.496

0.490

0.479

0.467

0.452

0.437

0.421

0.405

0.389

0.359

0.332

0.319

0.307

0.285

0.265

0.248

0.225

0.194

0.151

0.123

0.063

0.032

1,1

0.500

0.500

0.497

0.491

0.481

0.469

0.455

0.440

0.424

0.408

0.392

0.362

0.335

0.322

0.309

0.287

0.267

0.249

0.226

0.195

C.151

0.123

0.063

0.032

0.246

0.224

0.193

0.151

0.123

0.063

0.032

0.245

0.223

0.192

0.150

0.123

0.363

0.032

0.244

0.222

3.192

0.150

0.122

0.063

0.032

0.242

0.220

0.191

0.149

0.122

0.063

0.032

C 0 e f f i 0 ----B = -

k z

	Valeurs de ^c /d													
z/d	0	0,2	0,4	0,5	0,6	0,8	1,0	1,2	1,4	1,5	1,6	1,8	2	
0	0.5CC	0.500	C.500	0.500	0.500	0.500	0.50D	0.500	0.500	0.500	0.500	0.500	0.500	
0,05	0.468	C.468	C.468	0.468	0.467	0.466	0.465	0.463	0.461	0.459	0.457	0.449	0.433	
0,10	0.437	C.437	C.436	0.435	0.435	0.433	0.431	0.427	0.423	0.419	0.416	0.404	0.389	
0,15	0.4C6	C.4C6	C.405	0.404	0.403	0.401	0.398	0.393	0.387	0.383	0.378	C.366	0.352	L 0 6
0,20	C.376	C.376	C.374	0.374	0.373	0.370	0.366	0.360	0.353	0.349	0.344	O.333	0.321	
0,25	0.347	C.347	C.345	0.344	0.343	0.340	0.336	0.330	0.323	0.318	0.314	O.304	0.294	
0,30	0.320	C.293	C.318	0.317	0.315	0.312	0.308	0.302	0.295	0.291	0.286	0.278	C.270	TTICIE
0,35	C.294	C.293	C.292	0.291	0.289	0.286	0.281	0.276	0.269	0.266	0.262	0.255	O.249	
0,40	0.269	C.269	C.267	0.266	0.265	0.262	0.257	0.252	0.246	0.243	0.240	0.235	O.230	
0,45	0.246	0.246	C.245	0.244	0.242	0.239	0.235	0.231	0.226	0.223	0.221	0.216	0.212	-
0,50	C.225	C.225	C.223	0.223	0.221	0.219	0.215	0.211	0.207	0.205	0.203	0.199	0.197	
0,55	C.206	0.2C5	C.204	0.203	0.202	0.200	0.197	0.193	0.190	0.188	0.187	0.184	0.182	
0,60	C.188	C.187	C.186	0.186	0.185	0.183	0.180	0.177	0.175	0.173	0.172	0.170	C.169	×
0,65	C.171	C.171	C.17C	0.169	0.169	0.167	0.165	0.163	0.161	0.160	0.159	0.158	O.157	
0,70	C.156	C.156	C.155	0.155	0.154	0.153	0.151	0.150	0.148	0.147	0.147	0.146	O.146	
0,75	0.142	0.142	C.142	0.141	0.141	0.140	0.139	0.137	0.136	0.136	0.136	0.136	0.136	
0,80	C.13C	C.13C	C.129	0.129	0.129	0.128	0.127	0.127	0.126	0.126	0.126	0.126	0.127	
0,90	U.1C8	C.1C8	C.108	0.108	0.108	0.108	0.108	0.108	0.108	0.108	0.108	0.109	0.110	
1,0	C.CS1	C.C91	C.091	0.091	0.991	0.091	0.091	0.092	0.092	0.093	0.093	0.C95	0.096	
1,2	C.C65	C.C65	C.065	0.065	0.065	0.065	0.067	0.068	0.069	0.070	0.071	0.C72	0.074	
1,5	C.G4C	C.C4C	C.041	0.041	0.041	0.042	0.043	0.044	0.046	0.047	0.048	0.C49	0.051	
2	0.020	C.C2C	C.021	0.021	0.021	0.022	0.023	0.024	0.025	0.026	0.026	0.C28	C.029	
3	C.CC7	C.CC7	C.007	0.007	0.007	0.008	0.008	0.009	0.009	0.010	0.010	0.C11	0.012	
1 0	C.CCC	C.CCC	C.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.C00	0.000	

(Voir graphique p. 428)

.

Chapitre 6

EXPRESSION DES COEFFICIENTS

$$\begin{split} \mathbf{d}_{0} &= \frac{1}{\pi} \left[(1-\xi) \left(\operatorname{Arctg} \frac{\xi}{\zeta} - \operatorname{Arctg} \frac{\xi-1}{\zeta} \right) + \frac{\xi\zeta}{\xi^{2} + \zeta^{2}} \right] \\ \mathbf{d}_{1} &= \frac{1}{\pi} \left[\zeta \left(\operatorname{Arctg} \frac{\xi}{\zeta} - \operatorname{Arctg} \frac{\xi-1}{\zeta} \right) - \frac{\zeta^{2}}{\xi^{2} + \zeta^{2}} \right] \\ \mathbf{d}_{2} &= \frac{1}{\pi} \left[(1-\xi) \left(\operatorname{Arctg} \frac{\xi}{\zeta} - \operatorname{Arctg} \frac{\xi-1}{\zeta} \right) - \frac{\xi\zeta}{\xi^{2} + \zeta^{2}} + \zeta \operatorname{Log} \frac{\xi^{2} + \zeta^{2}}{(\xi-1)^{2} + \zeta^{2}} \right] \\ \mathbf{s}_{0} &= \frac{1}{\pi} \left[\xi \left(\operatorname{Arctg} \frac{\xi+1}{\zeta} + \operatorname{Arctg} \frac{\xi-1}{\zeta} - 2 \operatorname{Arctg} \frac{\xi}{\zeta} \right) + \operatorname{Arctg} \frac{\xi+1}{\zeta} - \operatorname{Arctg} \frac{\xi-1}{\zeta} \right] \\ \mathbf{s}_{1} &= \frac{\xi}{\pi} \left[2 \operatorname{Arctg} \frac{\xi}{\zeta} - \operatorname{Arctg} \frac{\xi+1}{\zeta} - \operatorname{Arctg} \frac{\xi-1}{\zeta} \right] \\ \mathbf{s}_{2} &= \frac{1}{\pi} \left[\xi \left(\operatorname{Arctg} \frac{\xi+1}{\zeta} + \operatorname{Arctg} \frac{\xi-1}{\zeta} - 2 \operatorname{Arctg} \frac{\xi}{\zeta} \right) + \operatorname{Arctg} \frac{\xi+1}{\zeta} \right] \\ - \operatorname{Arctg} \frac{\xi-1}{\zeta} + 2 \zeta \operatorname{Log} \frac{\xi^{2} + \zeta^{2}}{\sqrt{(\xi^{2} + \zeta^{2} + 1)^{2} - 4 \xi^{2}}} \right] \\ \mathbf{p}_{0} &= \frac{1}{\pi^{2}} \left[(\chi^{2} - \chi^{2} + \chi^{2}) \left(\operatorname{Arctg} \frac{\chi-\alpha}{z} - \operatorname{Arctg} \frac{\chi+\alpha}{z} \right) + 2 \operatorname{az} \right] \\ \mathbf{p}_{4} &= \frac{1}{\pi^{2}} \left[2 \operatorname{ax} \left(\operatorname{Arctg} \frac{\chi+\alpha}{z} - \operatorname{Arctg} \frac{\chi-\alpha}{z} - \operatorname{Arctg} \frac{\chi+\alpha}{z} \right) + 2^{2} \operatorname{Log} \frac{(\chi-\alpha)^{2} + z^{2}}{(\chi+\alpha)^{2} + z^{2}} \right] \\ \mathbf{p}_{2} &= \frac{1}{\pi^{2}} \left[(\chi^{2} - \chi^{2} + \chi^{2}) \left(\operatorname{Arctg} \frac{\chi-\alpha}{z} - \operatorname{Arctg} \frac{\chi-\alpha}{z} - \operatorname{Arctg} \frac{\chi+\alpha}{z} \right) + 2 \operatorname{az} \right] \\ \mathbf{k}_{\chi} &= \frac{1}{\pi} \left[\frac{2 - \alpha}{2} + \chi^{2} \right) \left(\operatorname{Arctg} \frac{\chi-\alpha}{z} - \operatorname{Arctg} \frac{\chi-\alpha}{z} - \operatorname{Arctg} \frac{\chi+\alpha}{z} \right] \\ \mathbf{k}_{\chi} &= \frac{1}{\pi} \left[\frac{2 - \alpha}{2} + \chi^{2} \right] \left(\operatorname{Arctg} \frac{2 - \alpha}{2} - \frac{2 - \alpha}{2} \operatorname{Arctg} \frac{2 - \alpha}{z} - \frac{\alpha}{z} \operatorname{Log} \frac{(2 - \alpha)^{2} + \frac{1}{2} \pi^{2}} \right] \\ \mathbf{k}_{\chi} &= \frac{1}{\pi} \left[\frac{2 - \alpha}{2} + \chi^{2} \right] \left[\frac{2 - \alpha}{2} + \chi^{2} \right] \left[\frac{2 - \alpha}{2} + \chi^{2} \right] \left[\frac{2 - \alpha}{2} - \chi^{2} \right] \\ \mathbf{k}_{\chi} &= \frac{1}{\pi} \left[\frac{2 - \alpha}{2} + \chi^{2} \right] \left[\frac{2 - \alpha}{2} + \chi^{2} \right] \left[\frac{2 - \alpha}{2} + \chi^{2} \right] \left[\frac{2 - \alpha}{2} - \chi^{2} \right] \left[\frac{2 - \alpha}{2} - \chi^{2} \right] \left[\frac{2 - \alpha}{2} \right] \\ \mathbf{k}_{\chi} &= \frac{1}{\pi} \left[\frac{2 - \alpha}{2} + \chi^{2} \right] \left[\frac{2 - \alpha}{2} + \chi^{2} \right] \left[\frac{2 - \alpha}{2} - \chi^{2} \right] \left[\frac{2 - \alpha}{2} - \chi^{2} \right] \\ \mathbf{k}_{\chi} &= \frac{1}{\pi} \left[\frac{2 - \alpha}{2} + \chi^{2} \right] \left[\frac{2 - \alpha}{2} + \chi^{2} \right] \left[\frac{2 - \alpha}{2} - \chi^{2} \right] \left[\frac{2 - \alpha}{2} - \chi^{2} \right] \left[\frac{2 - \alpha}{2} \right] \left[\frac{2 -$$

BIBLIOGRAPHIE

Nous avons obtenu les coefficients donnés dans cette section par intégration des formules de Flamant [1] et nous avons publié deux articles à ce sujet [2, 3]. Des études analogues, mais moins complètes, ont été faites par Jurgenson [4]et Osterberg [5].

REFERENCES

- M. FLAMANT, "Sur la répartition des pressions dans un solide rectangulaire chargé transversalement", <u>Comptes Rendus à l'Académie des Sciences</u>, 114 (Paris, 1892), 1465-1468.
- [2] J.P. GIROUD, "Calcul rapide des contraintes provoquées dans le sol par un remblai", <u>Bulletin de liaison des Laboratoires Routiers</u>, L.C.P.C., 35 (déc. 1968), 83-88.
- [3] J.P. GIROUD, "Applications de la théorie de l'élasticité au calcul du tassement des remblais routiers", <u>Revue Générale des Routes et des Aérodromes</u>, 455 (juin 1970), 62-78.
- [4] L. JURGENSON, "The application of theories of elasticity and plasticity to foundations problems", <u>Contributions to Soil Mechanics</u>, 1925-1940, Boston Soc. of Civil Engineers (Boston, 1940).
- [5] J.O. OSTERBERG, "Ligne d'influence des contraintes dans un massif semi-infini chargé par un remblai", <u>C.R. 4° Cong. Int. Mec. Sols. Trav. Fond. 1</u> (Londres 1957), 393-394.

SECTION 6-11

6-11

REMBLAI DE GRANDE LONGUEUR ET DE SECTION SYMÉTRIQUE TRIANGULAIRE OU TRAPÉZOÏDALE

(digues, remblais routiers) sur une couche de sol homogène d'épaisseur finie

SOMMAIRE

- Définition du sol
- Définition de la charge
- Calcul direct du tassement
- Calcul des contraintes
- Tables et Graphiques
- Bibliographie
Chapitre 6

DEFINITION DU SOL

La <u>couche de sol homogène</u> d'épaisseur H repose sur un <u>substratum indéformable</u> auquel elle adhère parfaitement. Si cette adhérence n'est pas parfaite les contraintes σ_x et τ_{zx} au voisinage de la surface de contact seront moins fortes que celles données ici, le tassement sera plus important et la contrainte σ_z sera peu affectée. Si la couche de sol n'est pas parfaitement homogène, les contraintes seront peu affectées tandis que le calcul direct du tassement ne fournira qu'un ordre de grandeur. Encore faut-il que l'on ait pu estimer une valeur moyenne des propriétés du sol pour toute la couche.

DEFINITION DE LA CHARGE

On admet que le remblai exerce sur le sol une <u>charge normale</u> dont la distribution se déduit de la section par une affinité de rapport γ (poids volumique du matériau en remblai) (Voir Fig. 1). Ainsi, la répartition de la charge est triangulaire ou trapézoïdale selon que la section du remblai est triangulaire ou trapézoïdale.

FIG. 1. - (a) Définition des sections de remblais et de la couche de sol qui les supporte. (b) Charge équivalente.

434

CALCUL DIRECT DU TASSEMENT

```
a) Remblai de section triangulaire.
```

Le tassement de tout point de la surface du sol est donné directement par :

(1)
$$w = \frac{\gamma h}{E} ar_{H}$$

avec :

- γ : poids volumique du sol en remblai,
- h : hauteur du remblai,
- a : demi-largeur du remblai,
- E : module d'Young du sol supportant le remblai,
- $r_{_{\rm H}}$: coefficient sans dimensions dépendant de v, H/a et x/a,
- v : coefficient de Poisson du sol supportant le remblai,
- H : épaisseur de la couche de sol,
- x : abscisse du point dont on calcule le tassement.

Les valeurs numériques de r_H sont données dans des tables et graphiques.

Exemple 1:

Quel est le tassement au centre et au bord de la base d'un remblai de section triangulaire symétrique de 7 m (23 ft) de haut et de pente 2/1, reposant sur une couche de sol de 21 m (69 ft) d'épaisseur ? Le poids volumique du matériau en remblai est 2,05 g/cm³ (128 lb/cu. ft) et les propriétés de la couche de sol sont E = 34 bars (71 000 lb/sq. ft) et v = 0,3.

Calculons d'abord : $\gamma h = 2 \ 050 \times 9,81 \times 7 \times 10^{-5} = 1,41 \text{ bar}$ $= 128 \times 23 = 2 \ 940 \text{ lb/sq. ft.}$ Par ailleurs : H/a = 1,5. On lit alors dans la table relative à v = 0,3 : $r_{\text{H}} = 0,83 \text{ pour x/a} = 0 \text{ (centre)}$ $r_{v} = 0,17 \text{ pour x/a} = 1 \text{ (bord)}$

Le tassement est alors donné par la formule (1) :

Au centre :

$$w = \frac{1,41}{34} \times 14 \times 0,83 = 0,48 \text{ m} = 48 \text{ cm}$$

$$= \frac{2.940}{71\,000} \times 46 \times 0,83 = 1,58 \text{ ft} = 19 \text{ in}.$$
Au bord :

$$w = \frac{1,41}{34} \times 14 \times 0,17 = 0,10 \text{ m} = 10 \text{ cm}$$

$$= \frac{2-940}{74\,000} \times 46 \times 0,17 = 0,32 \text{ ft} = 4 \text{ in}.$$

Notons que la déformée de la surface du sol est donnée directement par la courbe H/a = 1,5 du graphique de $r_{\rm H}$ relatif à ν = 0,3.

b) Remblai de section trapézoidale.

Le tassement de tout point de la surface du sol est donné directement par :

(2)
$$w = \frac{\gamma h}{E} \frac{a^2}{a-a'} \left[r_H - (a'/a)^2 r'_H \right]$$

avec les mêmes notations que la formule (1) et, en plus :

a' : demi-largeur de la plate-forme, $r'_{\rm H}$: coefficient identique à $r_{\rm H}$ mais relatif à H/a'.

Exemple 2 :

Quel est le tassement du centre et du bord de la base du remblai dont la section est donnée sur la figure 2 ? Le poids volumique du matériau en remblai est $\gamma = 1,89 \text{ g/cm}^3$ (118 lb/cu. ft) et les propriétés de la couche de sol sont : E = 40 bars (84 000 lb/sq. ft) et v = 0,2.

Calculons d'abord :

$$\gamma h = 1 \ 890 \times 9,81 \times 5,5 \times 10^{-5} = 1,02 \text{ bar}$$

 $= 118 \times 18 = 2 \ 120 \ 1b/sq.$ ft.
Par ailleurs, le coefficient r_H sera calculé avec H/a = 0,5 et le coefficient
r'_H avec H/a' = 1.
Tassement du centre (x/a = x/a' = 0)
Dans la table relative à v = 0,2, on lit :

$$r_{\rm H} = 0,405$$
 et $r'_{\rm H} = 0,707$

FIG. 2. - Définition du remblai de l'exemple 2.

D'où :

$$w = \frac{1,02}{40} \times \frac{(22)^2}{11} \left[0,405 - \left(\frac{11}{22}\right)^2 0,707 \right] = 0,25 \text{ m} = 25 \text{ cm}$$

$$w = \frac{2}{84} \frac{120}{000} \times \frac{(72)^2}{36} \left[0,405 - \left(\frac{36}{72}\right)^2 0,707 \right] = 8,3 \text{ ft} = 10 \text{ in}.$$
Tassement du bord
Dans la table relative à v = 0,2, on lit :

$$r_{\text{H}} = 0,025 \quad \text{pour } x/a = 1$$

$$r_{\text{H}}' = -0,002 \quad \text{pour } x/a' = 2 \cdot$$
D'où :

$$w = \frac{1,02}{40} \times \frac{(22)^2}{11} \left[0,025 + \left(\frac{11}{22}\right)^2 0,002 \right] = 0,03 \text{ m} = 3 \text{ cm},$$

$$w = \frac{2}{84} \frac{120}{000} \times \frac{(72)^2}{36} \left[0,025 + \left(\frac{36}{72}\right)^2 0,002 \right] = 0,1 \text{ ft}$$

CALCUL DES CONTRAINTES

a) Remblai de section triangulaire.

Les contraintes σ_z , τ_{zx} et σ_x sont données en tout point du sol sous forme de courbes isobares ("bulbes") pour les valeurs suivantes de H/a :

0,5,0,75,1,2,5,3,4 et 5.

Toutes ces valeurs ont été calculées pour v = 0,3 (coefficient de Poisson). Cependant σ_z ne variant qu'extrêmement peu avec le coefficient de Poisson, on pourra utiliser ces résultats pour toute valeur de v. De même, τ_{zx} dépend assez peu de

v et les valeurs données ici pourront être utilisées avec une bonne approximation. En revanche σ_x étant assez sensible aux variations du coefficient de Poisson, on n'utilisera ses valeurs données ici que pour v = 0,3.

Exemple 3 :

Quelle est la valeur de σ_z au point P de la figure 3, sachant que le poids volumique du sol en remblai est 2,05 g/cm³ (128 lb/cu. ft) ?

On a : $H/a = 2,5, \quad x/a = z/a = 0,5.$ On lit, sur le graphique relatif à $H/a = 2,5 : \sigma_z/\gamma h = 0,49.$ Par ailleurs : $\gamma h = 2 \ 050 \times 9,81 \times 7 \times 10^{-5} = 1,41 \text{ bar}$ $= 128 \times 23 = 2 \ 940 \ 1b/sq.$ ft. D'où : $\sigma_z = 0,49 \times 1,41 = 0,69 \text{ bar}$ $= 0,49 \times 2 \ 940 = 1 \ 440 \ 1b/sq.$ ft

b) Remblai de section trapézoidale.

Il faut utiliser le principe de superposition et considérer le trapèze comme la différence de deux triangles.

FIG. 3. - Définition du remblai de l'exemple 3.

Exemple 4 :

Considérons le remblai de l'exemple 3 à mi-hauteur en cours de construction. Quelle est la valeur de σ_{a} au point P (Fig. 4) ?

La contrainte en P s'obtient en faisant la différence entre la contrainte due au remblai terminé (calculée dans l'exemple 3) et celle due à la partie du remblai qui reste à construire. Cette partie est un triangle dont la demi-largeur est :

```
a' = 7 m (23 ft)

On a alors :

H/a' = 5, x/a' = z/a' = 1.

On lit alors, dans le graphique relatif à H/a = 5 :

\sigma_z/\gamma h = 0,22.

Mais \gamma h est ici relatif à h',

hauteur de la partie non construite

du remblai, égale à h/2.

D'où : \gamma h = 0,70 bar

(1 470 lb/sq. ft)

Et :

35m
```

```
\sigma_z = 0,22 \times 0,7 = 0,15 \text{ bar}
= 0,22 × 1 470 = 320 lb/sq. ft.
D'où, par soustraction :
\sigma_z = 0,69 - 0,15 = 0,54 \text{ bar}
= 1 440 - 320 = 1 120 lb/sq. ft.
```


FIG. 4. - Définition du remblai de l'exemple 4.

TABLES ET GRAPHIQUES

-	Calcul du tassement		
	Coefficient r _H	p.	440 à 449
	Calcul des contraintes		
	Courbes isobares	р.	450 à 470

Г_н

0 V S

							×/a						
5		0	0.2	0.4	0.6	0.8	1	1.5	2	3	4	5	10
	0	0	0	0	0	0	0	0	0	0	0	0	0
	0.1	0.100	0.082	0.062	0.042	0.022	0.003	0.002	0.002	0.002	0.002	0.002	0.002
	0.2	0.193	0.163	0.122	0.082	0.041	0.006	0.002	0.002	0.002	0.002	0.002	0.002
	0.3 0.4 0.5	0.283 0.368 0.449	0.243 0.321 0.391	0.183 0.244 0.304	0.121 0.162 0.204	0.061 0.083 0.107	0.011 0.019 0.029	0.001 0.000 -0.001	0.002 0.001 0.001	0.002 0.002 0.002	0.002 0.002 0.002	0.002 0.002 0.002	0.002 0.002 0.002
	0.6 0.7 0.8	0.524 0.593 0.658	0.466 0.533 0.594	0.363 0.419 0.473	0.246 0.289 0.332	0.133 0.162 0.192	0.043 0.059 0.079	-0.001 -0.000 0.003	-0.000 -0.002 -0.003	0.001 0.001 0.001	0.002 0.002 0.001	0.002 0.002 0.002	0.002 0.002 0.002
	0.9	0.718	0.652	0.524	0.374	0.224	0.100	0.007	-0.003	-0.000	0.001	0.001	0.002
	1.0	0.774	0.706	0.573	0.414	0.256	0.123	0.014	-0.003	-0.001	0.001	0.001	0.002
	1.1	0.826	0.756	0.619	0.454	0.288	0.148	0.023	-0.002	-0.002	0.001	0.001	0.002
	1.2	0.874	0.804	0.662	0.492	0.320	0.173	0.033	0.001	-0.003	0.000	0.001	0.002
	1.3	0.920	0.848	0.704	0.529	0.351	0.198	0.045	0.004	-0.004	-0.001	0.001	0.002
	1.4	0.963	0.890	0.743	0.565	0.382	0.224	0.059	0.009	-0.004	-0.001	0.001	0.002
	1.5	1.003	0.929	0.781	0.599	0.412	0.249	0.073	0.015	-0.005	-0.002	0.000	0.002
	1.6	1.041	0.967	0.817	0.632	0.441	0.275	0.088	0.022	-0.005	-0.003	-0.000	0.002
	1.7	1.077	1.003	0.851	0.664	0.470	0.300	0.104	0.031	-0.004	-0.003	-0.001	0.002
	1.8	1.112	1.037	0.883	0.694	0.498	0.325	0.121	0.040	-0.003	-0.004	-0.001	0.001
	1.9	1.144	1.069	0.914	0.724	0.525	0.349	0.137	0.050	-0.001	-0.005	-0.002	0.001
	2.0	1.175	1.100	0.944	0.752	0.551	0.372	0.154	0.060	0.001	-0.005	-0.003	0.001
(a)	2.5	1.312	1.235	1.076	0.879	0.670	0.483	0.239	0.119	0.021	-0.003	-0.005	0.001
	3.0	1.425	1.348	1.184	0.987	0.773	0.581	0.321	0.182	0.051	0.007	-0.005	0.000
	3.5	1.522	1.444	1.282	1.079	0.863	0.668	0.397	0.245	0.090	0.025	0.001	-0.001
Ì	4	1.606	1.527	1.365	1.160	0.943	0.745	0.467	0.307	0.130	0.049	0.012	-0.003
	5	1.746	1.668	1.504	1.298	1.079	0.878	0.591	0.419	0.216	0.106	0.047	-0.006
	6	1.862	1.783	1.618	1.412	1.191	0.989	0.697	0.518	0.298	0.170	0.093	-0.005
	7	1.959	1.880	1.716	1.509	1.287	1.084	0.788	0.606	0.374	0.232	0.143	0.000
	8	2.044	1.965	1.800	1.592	1.371	1.167	0.870	0.684	0.445	0.294	0.194	0.011
	9	2.119	2.040	1.874	1.667	1.445	1.240	0.942	0.754	0.509	0.353	0.244	0.026
	10	2.185	2.106	1.941	1.733	1.511	1.307	1.007	0.818	0.569	0.407	0.293	0.045
	11	2.246	2.167	2.002	1.794	1.571	1.366	1.066	0.876	0.624	0.458	0.338	0.067
	12	2.301	2.221	2.057	1.849	1.627	1.421	1.120	0.929	0.675	0.506	0.384	0.091
	13	2.352	2.273	2.107	1.899	1.676	1.471	1.170	0.979	0.722	0.551	0.427	0.115
	14	2.399	2.320	2.155	1.947	1.724	1.519	1.217	1.025	0.767	0.594	0.469	0.140
	15	2.443	2.364	2.198	1.990	1.767	1.562	1.259	1.067	0.809	0.634	0.505	0.166
	16	2.484	2.405	2.240	2.031	1.808	1.603	1.300	1.108	0.849	0.673	0.541	0.192
	17	2.522	2.443	2.277	2.069	1.846	1.641	1.338	1.145	0.885	0.707	0.575	0.216
	18	2.559	2.479	2.314	2.106	1.883	1.677	1.374	1.181	0.920	0.742	0.609	0.241
	19	2.593	2.514	2.348	2.140	1.917	1.712	1.408	1.215	0.954	0.777	0.641	0.266
	20	2.626	2.547	2.381	2.173	1.950	1.744	1.441	1.247	0.986	0.806	0.671	0.290
	25	2.767	2.688	2.523	2.314	2.091	1.885	1.582	1.387	1.124	0.942	0.804	0.403
	30	2.880	2.801	2.635	2.427	2.204	1.998	1.694	1.499	1.235	1.052	0.913	0.499
	40	3.063	2.984	2.818	2.610	2.387	2.181	1.877	1.682	1.417	1.232	1.091	0.665
	50	3.205	3.126	2.960	2.751	2.528	2.322	2.018	1.823	1.558	1.373	1.231	0.799
	100	3.638	3.559	3.393	3.185	2.962	2.756	2.451	2.256	1.990	1.805	1.662	1.221
	1000	4.964	4.885	4.720	4.511	4.288	4.082	3.778	3.582	3.316	3.130	2.988	2.544
	X	∞	œ	œ	∞	œ	œ	∞	∞	∞	∞	∞	∞

441

Г_н

V = 0.2

	ſ													
F		0	0.2	0.4	0.6	0.8	1	1.5	2	3	4	5	10	
	0 0.1 0.2	0 0.090 0.174	0 0.073 0.146	0 0.055 0.109	0 0.037 0.073	0 0.019 0.037	0 0.002 0.005	0 0.001 0.001	0 0.001 0.001	0 0.001 0.001	0 0.001 0.001	0 0.001 0.001	0 0.001 0.001	
	0.3 0.4 0.5	0.255 0.332 0.405	0.218 0.288 0.352	0.164 0.219 0.273	0.109 0.145 0.182	0.055 0.074 0.095	0.010 0.016 0.025	0.001 0.001 0.000	0.001 0.001 0.001	0.001 0.001 0.001	0.001 0.001 0.001	0.001 0.001 0.001	0.001 0.001 0.001	
	0.6 0.7 0.8	0.474 0.538 0.598	0.420 0.481 0.539	0.325 0.377 0.426	0.220 0.258 0.296	0.117 0.142 0.168	0.036 0.049 0.065	-0.000 0.000 0.002	0.001 0.000 -0.001	0.001 0.001 0.001	0.001 0.001 0.001	0.001 0.001 0.001	0.001 0.001 0.001	
	0.9 1.0 1,1	0.655 0.707 0.756	0.592 0.643 0.690	0.473 0.518 0.561	0.334 0.371 0.407	0.196 0.224 0.253	0.083 0.103 0.124	0.005 0.009 0.016	-0.002 -0.002 -0.002	0.001 0.001 0.000	0.001 0.001 0.001	0.001 0.001 0.001	0.001 0.001 0.001	
	1.2 1.3 1.4	0.802 0.845 0.886	0.735 0.777 0.817	0.602 0.641 0.678	0.442 0.477 0.510	0.281 0.310 0.338	0.145 0.168 0.191	0.023 0.033 0.044	-0.001 0.001 0.004	-0.001 -0.001 -0.002	0.001 0.001 0.001	0.001 0.001 0.001	0.001 0.001 0.001	
	1.5 1.6 1.7	0.924 0.960 0.995	0.853 0.890 0.924	0.713 0.747 0.779	0.542 0.572 0.602	0.366 0.393 0.419	0.214 0.237 0.259	0.055 0.068 0.082	0.009 0.014 0.020	-0.003 -0.003 -0.004	0.000	0.001 0.001 0.001	0.001 0.001 0.001	
	1.8 1.9 2.0	1.027 1.058 1.088	0.956 0.986 1.016	0.810 0.839 0.868	0.631 0.658 0.685	0.445 0.470 0.494	0.282 0.304 0.326	0.096 0.110 0.125	0.027 0.035 0.043	-0.003 -0.003 -0.002	-0.002 -0.002 -0.003	0.001 0.000 -0.001	0.001 0.001 0.001	
a L	2.5 3.0 3.5	1.219 1.327 1.419	1.145 1.253 1.345	0.994 1.096 1.190	0.805 0.908 0.953	0.607 0.704 0.790	0.429 0.521 0.603	0.201 0.276 0.347	0.093 0.149 0.206	0.011 0.035 0.067	-0.004 0.002 0.014	-0.003 -0.004 -0.002	0.001 0.001 0.001	
H	4 5 6	1.500 1.635 1.745	1.425 1.559 1.670	1.269 1.402 1.512	1.073 1.205 1.314	0.866 0.995 1.103	0.676 0.803 0.909	0.412 0.529 0.630	0.263 0.367 0.460	0.102 0.178 0.254	0.033 0.081 0.137	0.005 0.031 0.069	-0.000 -0.003 -0.005	
	7 8 9	1.839 1.920 1.992	1.763 1.844 1.916	1.605 1.686 1.758	1.407 1.487 1.558	1.194 1.275 1.345	1.000 1.079 1.149	0.717 0.794 0.863	0.543 0.617 0.684	0.325 0.391 0.452	0.194 0.251 0.304	0.112 0.158 0.204	-0.003 0.004 0.015	
	10 11 12	2.056 2.114 2.167	1.980 2.038 2.090	1.821 1.880 1.932	1.622 1.680 1.733	1.409 1.467 1.520	1.213 1.270 1.323	0.926 0.982 1.034	0.745 0.800 0.851	0.508 0.560 0.609	0.355 0.402 0.449	0.249 0.292 0.334	0.030 0.047 0.067	
	13 14 15	2.216 2.261 2.303	2.140 2.186 2.227	1.981 2.027 2.068	1.781 1.827 1.868	1.568 1.613 1.655	1.371 1.416 1.458	1.082 1.127 1.167	0.899 0.943 0.983	0.653 0.697 0.736	0.491 0.532 0.569	0.374 0.413 0.447	0.088 0.110 0.133	
	16 17 18	2.343 2.379 2.414	2.267 2.303 2.338	2.108 2.144 2.180	1.908 1.944 1.979	1.964 1.730 1.765	1.497 1.533 1.568	1.207 1.243 1.277	1.022 1.058 1.092	0.774 0.809 0.843	0.607 0.640 0.673	0.482 0.514 0.546	0.157 0.179 0.202	
	19 20 25	2.447 2.479 2.615	2.371 2.403 2.539	2.213 2.244 2.380	2.013 2.044 2.179	1.799 1.830 1.965	1.601 1.633 1.768	1.310 1.342 1.476	1.125 1.156 1.290	0.875 0.905 1.038	0.706 0.734 0.864	0.576 0.605 0.732	0.224 0.247 0.351	
	30 40 50	2.723 2.899 3.035	2.647 2.823 2.959	2.488 2.664 2.800	2.288 2.464 2.600	2.074 2.249 2.385	1.876 2.052 2.182	1.585 1.760 1.896	1.398 1.573 1.709	1.145 1.319 1.454	0.969 1.142 1.277	0.836 1.007 1.140	0.442 0.600 0.727	
	100 1000 00	3.451 4.733 ∞	3.375 4.657 ∞	3.216 4.498 ∞	3.016 4.298 ∞	2.802 4.084 ∞	2.604 3.886 ∞	2.313 3.594 ∞	2.125 3.406 ∞	1.869 3.151 ∞	1.691 2.972 ∞	1.554 2.836 œ	1.132 2.410 ∞	

Г_н

						T	NUMBRANCHUM						
	5						×/a						
		0	0.2	0.4	0.6	0.8	1	1.5	2	3	4	5	10
ſ	0	0	0	0	0	0	0	0	0	0	0	0	0
	0.1	0.075	0.061 0.121	0.046	0.031	0.016	0.002	0.001	0.001	0.001	0.001	0.001	0.001
	0.3	0.216	0.183	0.136	0.090	0.044	0.005	-0.001	0.001	0.001	0.001	0.001	0.001
	0.5	0.284	0.301	0.185	0.120	0.039	0.009	-0.001	0.001	0.001	0.001	0.001	0.001
-	0.6	0.411	0.363	0.277	0.183	0.093	0.021	-0.004	-0.001	0.001	0.001	0.001	0.001
	0.8	0.526	0.418	0.367	0.216	0.134	0.031	-0.007	-0.002	0.001	0.001	0.001	0.001
	0.9	0.577	0.520	0.410	0.283	0.158	0.057	-0.006	-0.006	-0.000	0.001	0.001	0.001
	1.1	0.672	0.610	0.490	0.349	0.207	0.090	-0.001	-0.009	-0.002	0.000	0.001	0.001
	1.2	0.715	0.652	0.528	0.381	0.232	0.108	0.004	-0.010	-0.003	-0.000	0.001	0.001
	1.4	0.793	0.728	0.598	0.442	0.283	0.147	0.019	-0.009	-0.006	-0.001	0.000	0.001
	1.5	0.829	0.763	0.631	0.471	0.308	0.168	0.028	-0.007	-0.008	-0.002	-0.000	0.001
	1.7	0.895	0.828	0.693	0.527	0.357	0.209	0.049	-0.000	-0.011	-0.004	-0.001	0.001
	1.8 1.9	0.926	0.859 0.887	0.721 0.749	0.554	0.380	0.229	0.061	0.005	-0.012	-0.005	-0.001	0.001
	2.0	0.983	0.915	0.776	0.604	0.426	0.269	0.086	0.016	-0.013	-0.009	-0.003	0.001
	2.5	1.107	1.037	0.894	0.716 0.814	0.530	0.363	0.153	0.057	-0.007	-0.013	-0.008	0.001
a)	3.5	1.296	1.226	1.079	0.895	0.701	0.525	0.286	0.157	0.035	-0.006	-0.014	-0.001
Ľ	4	1.372	1.301	1.154	0.969	0.773	0.594	0.347	0.208	0.065	0.007	-0.012	-0.003
T	6	1.605	1.533	1.384	1.196	0.996	0.813	0.550	0.391	0.200	0.094	0.036	-0.013
	7	1.694	1.622	1.472	1.284	1.083	0.899	0.632	0.469	0.265	0.145	0.073	-0.015
	9	1.838	1.767	1.617	1.428	1.226	1.040	0.770	0.601	0.383	0.246	0.155	-0.006
	10	1.899 1.954	1.828	1.677	1.488	1.826	1.100	0.829	0.658	0.436	0.293	0.195	0.004
	12	2.005	1.932	1.782	1.593	1.391	1.204	0.931	0.758	0.530	0.380	0.273	0.034
	13	2.051 2.094	1.979 2.022	1.828	1.639	1.437 1.480	1.250	0.976	0.803	0.572	0.420	0.311 0.347	0.052
10.000	15	2.133	2.062	1.911	1.722	1.519	1.332	1.057	0.883	0.650	0.493	0.378	0.001
	16	2.171 2.206	2.099	1.949	1.759	1.556	1.370	1.095	0.920	0.686	0.528	0.411 0.441	0.112
	18	2.239	2.167	2.016	1.827	1.624	1.437	1.162	0.986	0.750	0.590	0.471	0.152
	19 20	2.270	2.198	2.048	1.858	1.656	1.468	1.193	1.017	0.780	0.621	0.499	0.172
	25	2.429	2.357	2,206	2.016	1.813	1.626	1.350	1.174	0.935	0.770	0.646	C.280
	40	2.699	2.400	2.309	2.120	2.083	1.896	1.453	1.276	1.036	1.034	0.744	0.374
	100	3,223	3,151	3,001	2.415	2.212	2.025	2 1/3	1.570	1.329	1.161	1.032	0.642
	1000	4.451	4.380	4.229	4.039	3.836	3.649	3.372	3.194	2.952	2.783	2.653	2.250
1	1~	L ~	- w	u u	i w	u u	6	ω	0	0	00	8	8

6-1

r_h

	N					L							
5		0	0.2	0.4	0.6	0.8	1	1.5	2	3	4	5	10
ľ	0	0	0	0	0	0	0	0	0	0	0	0	0
	0.1	0.049	0.039	0.029	0.019	0.010	-0.000	0.001	0.001	0.001	0.001	0.001	0.001
	0.3	0.154	0.126	0.090	0.057	0.024	-0.005	-0.002	0.000	0.001	0.001	0.001	0.001
	0.4	0.208	0.174	0.125	0.077	0.021	-0.007	-0.006	-0.001	0.001	0.001	0.001	0.001
	0.6	0.314	0.272	0.199	0.122	0.049	-0.007	-0.015	-0.006	0.001	0.000	0.001	0.001
	0.7	0.365	0.319	0.237	0.148	0.062	-0.004	-0.020	-0.010	-0.002	-0.000	0.000	0.001
	0.0	0.415	0.304	0.274	0.174	0.077	0.002	-0.025	-0.014	-0.003	-0.001	0.000	0.001
	1.0	0.459	0.408	0.311	0.201	0.095	0.010	-0.029	-0.018	-0.005	-0.002	-0.000	0.001
	1.1	0.543	0.488	0.381	0.256	0.133	0.033	-0.032	-0.027	-0.010	-0.004	-0.001	0.001
	1.2	0.582	0.525	0.414	0.284	0.153	0.047	-0.031	-0.031	-0.012	-0.005	-0.002	0.001
ł	1.3	0.653	0.594	0.446	0.310	0.174	0.061	-0.029	-0.034	-0.015	-0.006	-0.003	0.001
	1.5	0.685	0.625	0.506	0.363	0.217	0.093	-0.019	-0.038	-0.022	-0.010	-0.005	0.000
i	1.6	0.716	0.656	0.534	0.388	0.238	0.110	-0.013	-0.038	-0.025	-0.012	-0.006	0.000
	1.7	0.746	0.685	0.561	0.412	0.259	0.127	-0.005	-0.037	-0.029	-0.014	-0.007	0.000
ł	1.8	0.774	0.712	0.587	0.436	0.279	0.144	0.003	-0.036	-0.032	-0.016	-0.008	-0.000
ł	2.0	0.826	0.764	0.637	0.481	0.320	0.179	0.022	-0.030	-0.037	-0.022	-0.012	-0.001
	2.5	0.939	0.875	0.744	0.582	0.412	0.261	0.076	-0.002	-0.042	-0.034	-0.021	-0.002
	3.0	1.033	0.969	0.833	0.670	0.494	0.337	0.134	0.036	-0.036	-0.042	-0.032	-0.005
>													
I	5	1.183	1.118	1.0982	0.812	0.632	0.469	0.244	0.122	0.002	-0.038	-0.044	-0.011
ЦĮ	6	1.398	1.332	1.194	1.021	0.837	0.668	0.428	0.283	0.113	0.025	-0.020	-0.032
	7	1.480	1.413	1.275	1.102	0.917	0.747	0.502	0.354	0.171	0.067	0.008	-0.040
	9	1.613	1.484	1.346	1.1/2	1.048	0.816	0.569	0.41/	0.225	0.111	0.040	-0.045
	10	1.670	1.603	1.465	1.290	1.104	0.933	0.682	0.526	0.323	0.195	0.110	-0.040
	11	1.720	1.654	1.515	1.341	1.154	0.983	0.732	0.574	0.367	0.235	0.144	-0.032
	12	1.707	1.700	1.562	1.387	1.201	1.028	0.776	0.618	0.409	0.273	0.178	-0.021
	13	1.809	1.743	1.604	1.429	1.243	1.071	0.818	0.659	0.447	0.309	0.211	-0.008
	15	1.886	1.819	1.681	1.505	1.319	1.146	0.893	0.732	0.519	0.375	0.272	0.022
-	1	1.920	1.854	1.715	1.540	1.353	1.181	0.927	0.766	0.552	0.407	0.301	0.039
	17	1.952	1.886	1.747	1.572	1.385	1.213	0.959	0.797	0.581	0.435	0.328	0.056
	10	2 012	1 0/5	1 807	1 632	1 445	1 272	1 019	0.056	0.630	0.402	0.201	0.000
	20	2.012	1.943	1.807	1.659	1.445	1.272	1.018	0.856	0.638	0.492	0.381	0.108
	25	2.158	2.092	1.953	1.778	1.590	1.418	1.163	1.000	0.780	0.629	0.515	0.102
	30	2.254	2.188	2.049	1.874	1.686	1.513	1.258	1.095	0.874	0.721	0.605	0.269
	50	2.408	2.542	2.203	2.027	1.959	1.786	1.412	1.248	1.026	0.872	0.754	0.402
	100	2.894	2.828	2.689	2.513	2.326	2.153	1.897	1.733	1,510	1.354	1.234	0.865
	1000	4.053 œ	3.987 œ	3.848	3.673	3.486	3.313 m	3.057	2.893	2.669	2.513	2.394	2.021
1	1 - 1	1		-	-								~

GIROUD. — Tables pour le calcul des fondations. Tome 2

ľ,

V = 0.5

		×/a											
		0	0.2	0.4	0.6	0.8	1	1.5	2	3	4	5	10
	0 0.1 0.2	0 0.007 0.026	0 0.002 0.013	0 0.000 0.005	0 -0.000 -0.000	0 -0.001 -0.006	0 -0.003 -0.013	0 -0.000 -0.002	0 -0.000 -0.000	0 -0.000 -0.000	0 -0.000 -0.000	0 -0.000 -0.000	0 -0.000 -0.000
	0.3 0.4 0.5	0.056 0.091 0.129	0.036 0.065 0.095	0.016 0.034 0.056	0.002 0.007 0.015	-0.012 -0.018 -0.021	-0.025 -0.038 -0.048	-0.008 -0.017 -0.027	-0.002 -0.006 -0.012	-0.000 -0.001 -0.003	-0.000 -0.000 -0.001	-0.000	-0.000
	0.6 0.7 0.8	0.168 0.208 0.247	0.134 0.170 0.206	0.080 0.107 0.135	0.027 0.041 0.058	-0.022 -0.019 -0.013	-0.057 -0.063 -0.066	-0.039 -0.050 -0.062	-0.019 -0.027 -0.036	-0.006 -0.009 -0.013	-0.002 -0.003 -0.005	-0.000 -0.001 -0.002	-0.000
	0.9 1.0 1.1	0.285 0.321 0.355	0.241 0.275 0.308	0.163 0.191 0.219	0.077 0.096 0.117	-0.005 0.006 0.018	-0.066 -0.064 -0.059	-0.072 -0.080 -0.087	-0.045 -0.054 -0.063	-0.018 -0.022 -0.027	-0.008 -0.011 -0.014	-0.003 -0.005 -0.007	-0.000
	1.2 1.3 1.4	0.388 0.419 0.449	0.339 0.369 0.398	0.246 0.272 0.298	0.138 0.159 0.180	0.032	-0.052 0.043 0.033	-0.093 -0.096 -0.098	-0.072 -0.080 -0.087	-0.033 -0.039 -0.045	-0.017 -0.021	-0.009 -0.012	-0.000
	1.5 1.6 1.7	0.477 0.504 0.530	0.425 0.452 0.477	0.323 0.347 0.370	0.201 0.221 0.242	0.079 0.095 0.112	-0.022 -0.010 0.002	-0.098 -0.097 -0.094	-0.093 -0.098 -0.102	-0.051 -0.058 -0.064	-0.028 -0.032 -0.037	-0.017 -0.020 -0.023	-0.001 -0.002 -0.003
	1.8 1.9 2.0	0.555 0.578 0.601	0.501 0.524 0.546	0.392 0.414 0.435	0.261 0.281 0.299	0.128 0.144 0.161	0.015 0.028 0.041	-0.090 -0.086 -0.080	-0.104 -0.106 -0.107	-0.071 -0.077 -0.082	-0.041 -0.046 -0.051	-0.026 -0.029 -0.032	-0.003 -0.004 -0.005
e	2.5 3.0 3.5	0.700 0.783 0.855	0.644 0.726 0.797	0.528 0.606 0.677	0.387 0.463 0.528	0.238 0.308 0.371	0.108 0.172 0.230	-0.043 0.001 0.046	-0.097 -0.074 -0.044	-0.104 -0.112 -0.109	-0.075 -0.095 -0.108	-0.050 -0.070 -0.088	-0.010 -0.017 -0.024
H/	4 5 6	0.917	0.859 0.963 1.049	0.738 0.841 0.926	0.588	0.428	0.284	0.090	-0.011 0.058	-0.098	-0.113 -0.107	-0.101 -0.114	-0.032
	7 8 9	1.181 1.244 1.300	1.122 1.185 1.241	0.999 1.062 1.117	0.844 0.907 0.962	0.679 0.741 0.796	0.529 0.590 0.644	0.312 0.371 0.423	0.183 0.237 0.287	0.028	-0.055 -0.021 0.014	-0.096 -0.074	-0.088 -0.102
	10 11 12	1.350 1.396 1.437	1.291 1.336 1.377	1.167 1.213 1.254	1.012 1.057 1.098	0.846 0.891 0.932	0.693 0.738 0.778	0.471 0.515 0.554	0.333 0.375 0.414	0.156	0.048	-0.022	-0.115 -0.115 -0.112
	13 14 15	1.475 1.510 1.543	1.416 1.451 1.484	1.292 1.327 1.360	1.136 1.171 1.204	0.969 1.005 1.037	0.816 0.851 0.884	0.591 0.626 0.658	0.450 0.484 0.515	0.264 0.296 0.326	0.144 0.173 0.201	0.061 0.088 0.112	-0.105 -0.097 -0.087
a state of the second	16 17 18	1.574 1.603 1.630	1.515 1.544 1.571	1.391 1.420 1.447	1.235 1.624 1.291	1.068 1.097 1.124	0.914 0.943 0.970	0.688	0.545 0.573 0.600	0.355 0.382 0.407	0.228 0.254 0.278	0.137 0.160 0.184	-0.075 -0.063 -0.050
a ar e regeneration and and the solution	19 20 25	1.656 1.680 1.787	1.597 1.621 1.728	1.473 1.497 1.603	1.316 1.341 1.447	1.150 1.174 1.280	0.995	0.769 0.793 0.898	0.625 0.649 0.753	0.432 0.455 0.558	0.303 0.324 0.424	0.206 0.228 0.323	-0.037 -0.023 0.045
	30 40 50	1.874 2.011 2.118	1.815 1.952 2.059	1.690 1.827 1.934	1.534 1.671 1.778	1.367 1.504 1.610	1.213 1.350 1.456	0.985 1.122 1.228	0.839 0.976 1.082	0.643 0.778 0.883	0.507 0.641 0.745	0.404 0.536 0.640	0.111 0.226 0.322
	100 1000 0	2.449 3.530 ∞	2.389 3.471 00	2.265 3.347 œ	2.109 3.191 ∞	1.941 3.023 ∞	1.787 2.869 00	1.558 2.641 ∞	1.412 2.494 ∞	1.213 2.295 ∞	1.074 2.155 ∞	C.937 2.048 00	0.638 1.716 0

6-11

55t

.

459

GIROUD. - Tables pour le calcul des fondations. Tome 2

31

6-11

Section 6-11

•

BIBLIOGRAPHIE

Nous avons obtenu les résultats indiqués dans cette section en collaboration avec Watissée et Rabatel [1, 2, 3].

REFERENCES

- [1] J.P. GIROUD, "Applications de la théorie de l'élasticité au calcul du tassement des remblais routiers", <u>Revue Générale des Routes et des Aérodromes</u>, 455 (juin 1970), 62-78.
- [2] J.P. GIROUD and A. RABATEL, "Settlement of embankment on layer of soil", <u>Jour-</u> <u>nal of the Soil Mechanics and Foundations Division</u>, ASCE, 97, SM 1 (January 1971), 287-293.
- [3] J.P. GIROUD and H. WATISSEE, "Stresses due to an embankment resting on a finite layer of soil", Proceedings Sixth Conference of Australian Road Research <u>Board</u>, 847 (Camberra, August 1972).

SECTION 6-12

6-12

CHARGE DE GRANDE LONGUEUR DISTRIBUÉE DE FAÇON QUELCONQUE

(remblais) sur un sol homogène d'épaisseur infinie

SOMMAIRE

- Définition du sol
- Définition de la charge
- Calcul du tassement
- Calcul des contraintes
- Damiers
- Construction des damiers
- Bibliographie

Chapitre 6

DEFINITION DU SOL

Le sol est supposé <u>homogène sur une épaisseur infinie</u>. Cependant, si ces deux hypothèses ne sont pas respectées, les valeurs des contraintes données ici, en particulier celles de σ_z , constituent une approximation suffisante des contraintes réelles (sauf dans le cas où le sol est constitué d'une couche dure reposant sur une couche bien plus molle).

DEFINITION DE LA CHARGE

Le calcul est fait pour une fondation infiniment longue ayant même distribution de charge dans toute section droite. Cette distribution est absolument quelconque. Pour utiliser les "damiers", il suffit de la décomposer en deux parties : la distribution de la charge normale et la distribution de la charge tangentielle.

CALCUL DU TASSEMENT

Le tassement d'une charge de longueur infinie sur un sol homogène d'épaisseur infinie est infini. Il n'est donc pas possible de faire simultanément les deux hypothèses simplificatrices : longueur infinie de la charge et épaisseur infinie du sol compressible.

Pour faire un calcul direct du tassement, il faudra se reporter soit au cas des fondations rectangulaires (sur un sol d'épaisseur infinie ou non), soit au cas de fondations de longueur infinie sur un sol d'épaisseur finie. Ou bien alors, il faudra faire un calcul indirect du tassement par l'intermédiaire des contraintes données ci-après.

CALCUL DES CONTRAINTES

Ce calcul se fait à l'aide des damiers dont nous allons indiquer le mode d'emploi sur un exemple.

Considérons la digue de grande longueur dont la section droite est donnée sur la figure 1 a. On peut supposer avec une bonne approximation qu'elle exerce sur

Section 6-12

le sol la charge normale indiquée sur la Fig. 1 b et dont le maximum est γ h. Prenons par exemple :

$$\rho = 1,9 \text{ g/cm}^3 = 1 900 \text{ kg/m}^3 \text{ (grammes et kilogrammes masse),}$$

$$\gamma = \rho g = 1,9 \text{ g/cm}^3 = 1,9 \text{ t/m}^3 \text{ (grammes et tonnes poids)}$$

$$= 118,5 \text{ lb/cu. ft.,}$$

avec :

ρ : masse volumique du matériau de la digue,
γ : poids volumique du matériau de la digue,
g : accélération de la pesanteur (9,81 m/s),
h : hauteur de la digue.

On obtient, dans le système français :

$$\gamma h = 1,9 \pm 5,5 = 10,45 \pm 10^2 = 1.045 \text{ kg/cm}^2;$$

FIG. 1. – (a) Section d'une digue dont la longueur perpendiculaire au dessin est très grande. On désire calculer σ_z au point A.

(b) Charge normale approximativement exercée par la digue sur le sol.

475

dans le système britannique :

 $\gamma h = 118,5 \times 18 = 2$ 135 lb/sq. ft = 14,8 p.s.i.;

et dans le système international :

 $\gamma h = \rho g h = 1 900 \ge 9,81 \ge 5,5 = 102 500 N/m^2 = 1,025 bar.$

Les opérations à faire sont alors les suivantes :

1. Dessiner sur papier calque la charge à une échelle telle que : A'A soit égal à P'P sur le damier 1, γh soit égal à p sur ce même damier.

2. Placer le calque sur le damier 1 en faisant coîncider A'A et P'P (Fig. 2).

FIG. 2. - Utilisation d'un damier : le profil de charge, placé sur le damier, a une échelle telle que A'A coïncide avec P'P et que γh soit égal à p. On trouve ici 295 cases recouvertes par la section de la charge.

476

Section 6-12

3. Compter le nombre m de cases (blanches et noires) du damier recouvertes par le profil de la charge. Dans l'exemple, nous trouvons : m = 295.

4. Calculer la contrainte $\sigma_{\rm z}$ en P par la formule :

(1) $\sigma_{\pi} = 0,002 \text{ myh}$

soit, pour l'exemple :

 $\sigma_z = 0,002 \times 295 \times 1,025 = 0,605 \text{ bar}$ = 1 260 lb/sq. ft = 0,875 p.s.i. = 0,616 kg/cm²

Remarques :

 Le comptage se simplifie en groupant les cases en rectangles lorsque la charge est uniformément distribuée et en utilisant les nombres portés dans les cases là où la charge varie.

2. Pour calculer σ_z en d'autres points du sol situés à la même profondeur que $A(A_1, A_2, A_3, Fig. 1)$, il suffit d'utiliser le même calque en le déplaçant latéralement sur le damier.

3. Pour calculer σ_z aux points situés à une profondeur différente, il faut redessiner le profil de la charge à une échelle différente.

4. On pourrait choisir l'échelle du dessin telle que γ h soit plus petit que p. Par exemple, avec $\gamma h/p = 1/k$, la formule (1) deviendrait :

(2)
$$\sigma_{2} = 0,002 \text{ kmyh}$$

5. On peut calculer de la même manière les contraintes τ_{zx} et σ_{x} dues à une charge normale en utilisant les damiers 2 et 3. Toutefois, dans le damier 2, les cases situées à droite de OP sont affectées du signe moins. Ainsi, τ_{zx} est nul sur l'axe d'une charge normale symétrique (Fig. 3 b).

6. On peut également calculer de la même manière les contraintes σ_z , τ_{zx} et σ_x dues à des charges tangentielles en utilisant les damiers 2, 3 et 4. Notons que le damier 2 fournit indifféremment τ_{zx} dû à une charge normale et σ_z dû à une charge tangentielle (de même le damier 3 avec σ_x et τ_{zx}). Enfin, les résultats obtenus pour une charge tangentielle de sens contraire à l'axe 0x sont affectées du signe moins (Fig. 3 d).

FIG. 3. - (a) Convention de signe : les contraintes normales de compression sont positives ; les contraintes tangentielles sont positives si elles sont de même sens que les axes et s'exercent sur les coupes dont la normale intérieure est parallèle aux axes et de même sens.

(b) (c) (d) Signe des contraintes dues à des charges symétriques.

6-12

DAMIER 2. - Pour des charges normales de compression et pour des charges tangentielles orientées vers la droite, les cases sont affectées du signe plus à droite de P et moins à gauche. Et inversement pour les charges tangentielles orientées vers la gauche.

DAMIER 3. - Les cases sont toutes comptées positivement pour les charges normales de compression et les charges tangentielles orientées vers la droite. Elles sont comptées négativement pour les charges tangentielles orientées vers la gauche.

DAMIER 4. - Pour les charges tangentielles orientées vers la droite, les cases de droite sont comptées positivement et celles de gauche négativement, et inversement pour les charges tangentielles orientées vers la gauche.

Section 6-12

7. Les charges exercées sur le sol par la digue de la figure 1 sont en réalité légèrement inclinées : leurs composantes tangentielles produisent au point A une petite contrainte σ_{z} que l'on aurait pu calculer par le damier 2 et ajouter à 1,025 bar.

8. Dans certains cas simples comme les charges triangulaires symétriques, les formules de l'élasticité donnent directement la valeur des contraintes en un point quelconque du massif de sol . Dans ces mêmes cas, les valeurs obtenues à l'aide des damiers n'ont jamais différé des valeurs exactes de plus de 2 %.

CONSTRUCTION DES DAMIERS

L'abscisse x/z des lignes verticales des quatre damiers est donnée respectivement par les quatre formules suivantes où λ est un nombre entier :

Damier 1 :

(3) Arctg
$$\frac{x}{z} + \frac{x/z}{1 + x^2/z^2} = \frac{\lambda \pi}{50}$$
 (1 $\leq \lambda \leq 25$)

Damier 2 :

(4)
$$\frac{x}{z} = \sqrt{\frac{\lambda \pi}{50 - \lambda \pi}}$$
 $(1 \le \lambda \le 15)$

Damier 3 :

(5) Arctg
$$\frac{x}{z} - \frac{x/z}{1 + x^2/z^2} = \frac{\lambda \pi}{50}$$
 (1 $\leq \lambda \leq 25$)

Damier 4 :

(6)
$$\log (1 + x^2/z^2) - \frac{x^2/z^2}{1 + x^2/z^2} = \frac{\lambda \pi}{50}$$
 $(1 \le \lambda \le \infty)$

Les valeurs numériques de x/z en fonction de λ sont données dans le tableau suivant.

Chapitre 6

1	No	du dam	ier	
σ/P	1	2	3	4
0	0	0	0	0
0,02	0,035	0,26	0,50	0,68
0,04	0,065	0,38	0,67	0,85
0,06	0,10	0,48	0,80	0,99
0,08	0,13	0,58	0,93	1,11
0,1	0,16	0,68	1,06	1,22
0,12	0,20	0,78	1,19	1,32
0,14	0,23	0,89	1,32	1,42
0,16	0,26	1,01	1,46	1,53
0,18	0,30	1,15	1,61	1,63
0,2	0,34	1,31	1,78	1,73
0,22	0,38	1,5	1,96	1,83
0,24	0,42	1,75	2,15	1,92
				e.
σ/P	N° 4	[σ/P	N° 4
		1 1		

TABLEAU 1. - Valeurs des formules (3) (4) (5) et (6)

-	N° du damier													
σ/P	1	2	3	4										
0,26	0,46	2,12	2,38	2,02										
0,28	0,52	2,71 4,05	2,65	2,12										
0,32	0,62	œ	3,38	2,32										
0,34	0,69		3,82	2,42										
0,36	0,76		4,43	2,53										
0,38	0,85		5,20	2,64										
0,4	.0,95		6,3	2,75										
0,42 0,44	1,08 1,25		7,8 10,67	2,87										
0,46	1,50		16,00	3,09										
0,48	2,00		32	3,21										
0,5	∞		∞	3,33										
σ/P	N° 4		σ/P	N° 4										
0,92	6,86		1,12	9,49										
0,94	7,1		1,14	9,79										
0,96	7,34		1,16	10,10										
0,98	7,58		1,18	10,43										
1	7,83		1,2	10,82										
1,02	8,10		1,22	1 1 ,15										
1, 04	8,36		1,24	11,55										
1,06	8,63		1,26	11,93										
1,08	8,91		1, 28	12,31										
1,1	9,19		1 , 3	1 2,71										

0,52	3,45	0,72	4,90
0,54	3,57	0,74	5,1
0,56	3,71	0,76	5,28
0,58	3,84	0,78	5,46
0,6	3,98	0,8	5,64
0,62	4,12	0,82	5 , 83
0,64	4,27	0,84	6,01
0,66	4,42	0,86	6,22
0,68	4,58	0,88	6,42
0,7	4,74	0,9	6,64

BIBLIOGRAPHIE

Cette section reproduit les résultats d'une étude originale publiée en 1970 [1].

REFERENCE

 J.P. GIROUD, "Calcul pratique des contraintes dans un sol supportant une charge de grande longueur", <u>Construction</u>; 6 (juin 1970), 221-226.

SECTION 6-13

6-13

CHARGE DE GRANDE LONGUEUR DISTRIBUÉE DE FAÇON QUELCONQUE

(remblais) sur une couche de sol homogène d'épaisseur finie

SOMMAIRE

- Définition du sol
- Définition de la charge
- Calcul direct du tassement
- Calcul des contraintes
- Construction des damiers
- Bibliographie

Chapitre 6

DEFINITION DU SOL

La <u>couche de sol homogène</u>, d'épaisseur H, repose sur un <u>substratum indéfor-</u> <u>mable</u> auquel elle adhère parfaitement. Si cette adhérence n'est pas parfaite, le tassement sera plus important. Si la couche de sol n'est pas parfaitement homogène, on pourra néanmoins obtenir un ordre de grandeur du tassement si l'on a pu estimer une valeur moyenne des propriétés (E, v) du sol pour toute la couche.

DEFINITION DE LA CHARGE

Le calcul est fait pour une fondation infiniment longue ayant même distribution de charge dans toute section droite. Les "damiers" donnés ci-après ne concernent que les charges normales. Mais la distribution de ces charges peut-être absolument quelconque pourvu qu'elle soit la même dans toute section droite.

CALCUL DIRECT DU TASSEMENT

Le calcul se fait à l'aide de "damiers" dont nous allons indiquer le mode d'emploi sur un exemple.

Exemple :

Déterminons le tassement w, du point A de la surface du sol provoqué par le remblai de grande longueur dont la section est indiquée sur la figure 1 a et dont le poids volumique est $\gamma = 2,2$ g/cm³. Nous supposons que les propriétés du sol sont à peu près constantes dans toute la couche et peuvent être caractérisées par E = 15 bars et $\gamma = 0,3$. Nous admettons que ce remblai exerce sur le sol la charge normale indiquée sur la figure 1 b et dont les deux parties sont :

- (1) $\gamma h_1 = 2\ 200 \times 9,81 \times 2 = 0,43 \times 10^5$ pascal = 0,43 bar.
- (2) $\gamma h_2 = 2200 \times 9,81 \times 3 = 0,65 \ 10^5 \text{ pascal} = 0,65 \text{ bar}.$

Les opérations à faire sont alors les suivantes :

1. Dessiner sur papier calque le profil de la charge de façon que :

- les longueurs horizontales soient à l'échelle indiquée sous chaque damier,
- la plus grande contrainte (ici $\gamma h_{
 m p}$) soit égale à la hauteur, p, du damier :

(3.)
$$p = \gamma h_0 = 0,65$$
 bar

Section 6-13

FIG. 1. - (a) Section transversale d'un remblai reposant sur une couche compressible dont on veut calculer le tassement en A et B.

(b) Distribution de contraintes normales approximativement exercées par le remblai sur la surface du sol.

2. Placer ce calque sur le damier correspondant à la valeur de v du sol (ici, v = 0,3) en faisant coïncider A et 0 (Fig. 2).

3. Compter le nombre m de cases (blanches et noires) du damier recouvertes par le profil de la charge. Ici, nous trouvons m = 23.

4. Calculer le tassement par la formule indiquée sur le damier. Ici :

(4) $w_A = 0,0065 \times 23 \times \frac{0.65 \times 20}{15} = 0.13 \text{ m} = 13 \text{ cm}$

489

FIG. 2. — Utilisation d'un damier (ici, v = 0,3) : on compte le nombre de cases recouvertes par le profil de la charge (ici, m = 23).

Remarques :

1. Les cases noires et les cases blanches sont équivalentes : leur couleur ne sert qu'à faciliter le comptage.

2. Le comptage se simplifie en groupant les cases en rectangles là où la charge est uniformément distribuée.

3. Pour guider le comptage, les grandes cases ont été subdivisées en cinquièmes par un trait fin. De plus, sur le damier v = 0,5, un tiret partage certaines cases en deux moitiés.

Section 6-13

4. Si le sol de l'exemple précédent avait eu pour coefficient de Poisson v = 0,5, on aurait trouvé pour le tassement en A :

 $m_1 = 9,5$ cases positives,

m₂ = 3,5 cases négatives,

soit :

$$m = m_1 - m_2 = 9,5 - 3,5 = 6$$

et :

(5) $w_A = 0,006 \ 36 \times 6 \times \frac{0,65 \times 20}{15} = 0,03 \ m = 3 \ cm.$

Les cases négatives mettent bien en évidence le fait que des charges éloignées provoquent un soulèvement si le sol est incompressible. Dans le cas v = 0,4le même effet se manifeste mais avec une moindre ampleur.

5. Si le coefficient de Poisson du sol ne correspond à aucun damier, on pourra interpoler à partir des valeurs fournies par les deux damiers voisins. Pour faire cette interpolation, il faut savoir que le cas v = 0,1 est très voisin du cas v = 0, et que le tassement pour v = 0,2, s'obtient approximativement en faisant la moyenne des cas v = 0 et v = 0,3.

6. Pour calculer le tassement d'un point tel que B, il faut déterminer successivement le tassement dû à la partie gauche et ajouter les deux valeurs (Fig. 3). On trouvera ainsi, pour v = 0,3:

• partie gauche : m, = 33 ;

• partie droite : m₂ = 39 ;

soit en tout :

(6)
$$w_B = 0,0065 \times (39 + 33) \frac{0,65 \times 20}{15} = 0,41 \text{ m} = 41 \text{ cm}.$$

491

Chapitre 6

FIG. 3. — Décomposition de la charge pour le calcul du tassement en B. Les deux charges (1) et (2), dessinées à l'échelle convenable, sont portées successivement sur le damier en faisant coïncider B et O. Cette décomposition serait inutile si nos damiers avaient été complétés par symétrie à gauche de O.

CALCUL DES CONTRAINTES

6-13

Nous n'avons pas établi de damiers pour le calcul des contraintes dans le cas d'une couche de sol d'épaisseur finie. Leur emploi serait trop compliqué et l'approximation fournie pour les contraintes par le cas du milieu semi-infini traité dans la section précédente est suffisante dans la majorité des cas.

DAMIER pour v = 0. Notons que les charges situées à une distance de 0 supérieure à 1,55 H ne provoquent pratiquement aucun tassement en ce point. Les grandes cases sont subdivisées en cinq cinquièmes par des traits fins.

DAMIER pour v = 0,3. Notons que les charges situées à une distance de 0 supérieure à 1,15 H ne provoquent pratiquement aucun tassement en ce point. Les grandes cases sont subdivisées en cinq cinquièmes par des traits fins.

DAMIER pour v = 0,4. Notons que les charges situées à une distance de 0 supérieure à 0,75 H provoquent un soulèvement en ce point, ce qui vient en diminution du tassement provoqué par les charges situées en deçà de la distance 0,75 H. Les grandes cases sont subdivisées en cinq cinquièmes par des traits fins.

6-13

33

$$W = 0,00636 m \frac{p H}{E}$$
(17)

DAMIER pour v = 0,5. Notons que les charges situées à une distance de 0 supérieure à 0,5 H provoquent un soulèvement en ce point, ce qui vient en diminution du tassement provoqué par les charges situées en deçà de la distance 0,5 H. Les grandes cases sont subdivisées en cinq cinquièmes par des traits fins ou en deux moitiés par un tiret.

CONSTRUCTION DES DAMIERS

Le tableau suivant donne l'abscisse des lignes verticales des quatre damiers. Pour v = 0,4 et v = 0,5, une ligne horizontale, dans le tableau, sépare les cases positives des négatives.

No	v = 0	v = 0,3	v = 0, 4	v = 0,5
0	0	0	0	0
1	0,019	0,030	0,032	0,041
2	0,053	0,069	0,078	0,126
3	0,102	0,130	0,150	0,5
4	0,164	0,229	0,275	1,155
5	0,243	0,380	0,750	1,960
6	0,354	1,15	œ	œ
7	0,530			
8	1,550			

BIBLIOGRAPHIE

Cette section reproduit les résultats d'une étude originale publiée en 1969 [1].

REFERENCE

 [1] J.P. GIROUD, "Estimation rapide du tassement d'une couche de sol compressible
 Application aux fondations de remblais routiers". <u>Revue Générale des Routes</u> <u>et des Aérodromes</u>, 442 (avr. 1969), 73-80.

INDEX (*)

adhérence (entre deux couches)	Vol. I	(Introduction § 3)
admissible (pression)	Vol. III	(Introduction § 1.d)
angle de frottement interne	Vol. I	(Introduction § 3 ; Sections 1-4, 1-5)
anisotrope (sol)	Vol. I	(Introduction § 3)
	Vol. III	(Section 7-3)
annulaire (fondation)	Vol. I	(Section 3-10)
approximation (grandeur de l')	Vol. I	(Deuxième page du chap. 2)
	Vol. II	(Deuxième page du chap. 6)
Archimède (poussée d')	Vol. III	(Introduction § 3)
argile	Vol. I	(Section 1-5)
assise rigide		Voir substratum
axes (systèmes d')	Vol. I	(Section 1-2)
base (profondeur de la)	Vol. III	(Introduction § 1.a)
base oblique	Vol. III	(Sections 7-9, 8-4)
bande infinie	Vol. II	(Chap. 6)
bibliographie	Vol. I	(Introduction § 10)
bicouche	Vol. I	(Sections 2-3, 3-3)
	Vol. II	(Sections 6-3, 6-6)
	Vol, III	(Section 7-5)
calcul direct du tassement	Vol. I	(Introduction § 5)
calcul indirect du tassement	Vol. I	(Introduction § 5)
capillarité	Vol. III	(Introduction § 3)
caractéristiques du sol	Vol. I	(Section 1-5)
cartésiennes (coordonnées)	Vol. I	(Section 1-2)
charge	Vol. I	(Introduction § 1)
charge excentrée	Vol. I	(Section 3-7)
	Vol. II	(Sections 4-1 et 4-2)

(+) Cet index, comme celui du volume précédent, couvre l'ensemble des "Tables pour le Calcul des Fondations". Il est toutefois légèrement plus complet que celui du tome 1.

Vol. III

(Chap. 8)

]	n	d	e	X

charge inclinée	Vol. I	(Section 2-1)
	Vol. II	(Sections 4-1 et 4-4)
	Vol. III	(Chap. 8)
charge limite	Vol. III	(Introduction § 1.b)
charge linéairement répartie	Vol. II	(Sections 4-1, 4-2, 6-4)
charge normale uniforme	Vol. I	(Sections 3-1, 3-2, 3-3, 3-4, 3-5)
	Vol. II	(Sections 4-1, 4-2, 4-3)
cheminée	Vol. I	(Section 3-10)
circulaire	Vol. I	(Chap. 3)
	Vol. III	(Introduction § 1.a)
coefficient de POISSON	Vol. I	(Introduction § 3; Section 1-5)
coefficient de réduction	Vol. III	(Section 8-1)
coefficient de sécurité	Vol. III	(Introduction § 1.d)
cohésion	Vol. I	(Introduction § 3 ; Section 1-5)
cohésion normale	Vol. III	(Introduction § 1.e)
compatibilité (relations de)	Vol. I	(Section 1-2)
compressibilité	Vol. I	(Section 1-3)
concentrée (charge, force)	Vol. I	(Chap. 2)
conique (remblai)	Vol. I	(Section 3-9)
contraintes	Vol. I	(Section 1-2)
conventions de signe	Vol. I	(Section 1-2)
conversion d'unités	Vol. I	(Section 1-1)
coordonnées	Vol. I	(Section 1-2)
COULOMB (loi de)	Vol. I	(Section 1-4)
cylindriques (coordonnées)	Vol. I	(Section 1-2)
damier	Vol II	(Sections 6-12 et 6-13)
déformation.	Vol. T	(Section $1-2$)
déformation plane	Vol. IT	(Deuxième page du Chap. 6)
déplacement	Vol. I	(Section 1-2)
deux couches	Vol. I	(Sections 2-3 et 3-3)
	Vol. II	(Sections 6-3 et 6-6)
	Vol. II	(Section 7-5)
deux dimensions	Vol. II	(Deuxième page du chap. 6)
déviatoire (module)	Vol. I	(Section 1-3)
direct (calcul)	Vol. I	(Introduction § 5)
distorsion	Vol. I	(Section 1-2)
distorsion (module de)	Vol. I	(Section 1-3)
distribution linéaire	Vol. II	(Sections 4-1, 4-2, 6-4)
distribution parabolique	Vol. I	(Section 3-9)
	Vol. II	(Section 6-10)

Index

distribution trapézoidale	Vol. II	(Sections 6-10 et 6-11)
distribution triangulaire	Vol. II	(Sections 6-10 et 6-11)
drainage (avant drainage, après drainage)	Vol. I	(Introduction § 3 ; Section 1-5)
	Vol. III	(Introduction § 3)
drainé (non drainé)	Vol. I	(Section 1-5)
	Vol. III	(Introduction § 3)
élasticité	Vol. I	(Introduction § 5 ; Section 1-3)
épaisseur finie (couche d')	Vol. I	(Sections 2-2, 3-2 et 3-8)
équilibre indéfini (équations de l')	Vol. I	(Section 1-2)
excentrée (charge)	Vol. I	(Section 3-7)
	Vol. II	(Sections 4-1 et 4-2)
	Vol. III	(Chap. 8)
excentricité de la charge	Vol. III	(Chap. 8)
excentricité optimale	Vol. III	(Chap. 8)
fictive (inclinaison)	Vol. III	(Introduction § 1.e)
force concentrée	Vol. I	(Chap. 2)
force par unité de longueur	Vol. I	(Section 2-4)
force portante	Vol. I	(Introduction § 4)
	Vol. III	(Introduction § 1.b)
	Vol. III	(Chap. 7 et 8)
frottement interne	Vol. I	(Introduction § 3 ; Section 1-5)
competizio dos fondations	Vol T	(Tetro Justice § 1)
geometrie des iondations	VOL. I	(Introduction § 1)
alignment (ontro down souchog)	VOL. III	(Introduction § 1.a)
glissement (entre deux couches)	VOL. III	(Section (-4)
grande lengueum (fordation 2.)	VOL. I	(Introduction § 4)
grande longueur (londation de)	VOL. II	(Cnap. 6)
gravier	VOL. I	(Section 1-5)
grille	Vol. II	(Chap. 5)
hauteur (de remblai)	Vol. I	(Section 3-9)
	Vol. IT	(Sections 4-6, 6-10 et 6-11)
hétérogène (sol)	Vol. T	(Introduction § 3)
homogène (sol)	Vol T	(Introduction § 3)
HOOKE (loi de)	Vol. I	(Individue of on 3, 5)
NOONE (TOT GE)	401. I	(Decoron 1-2)
inclinaison fictive	Vol. III	(Introduction § 1.e)
inclinaison réelle	Vol. III	(Introduction § 1.e)
incliné (sol)	Vol. III	(Sections 7-8 et 8-3)
inclinée (base de la fondation)	Vol. III	(Sections 7-9 et 8-4)

inclinée	(charge))	
----------	----------	---	--

incompre	ssible		•	•	• •	٠	•	• •	•	٠	•	•	•	•	•	•	•	•	•	•	•	•
indirect	(calcul).		• •			•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•
infinie	(bande)		••	•		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•
infinie	(fondation	de	l	01	ng	ju	e	ır)			•	•	•	•	•	•	•	•	•	•	•
instanta	né (tasseme	ent)).	•		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•
isotrope	(sol)			•		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•

LAME	(cc	eff:	icie	ents	de			•	•	• •	•	•	•	•		 •	•	•	•	•	•	•
LAME	(éç	uat	ion	de	NAV	EER).				•	•	•	•	•	 •	•	•	•	•	•	•
large	eur	des	for	ıdat	ions	s								• •			•	•		•		

ligne	de	longueur	f	i	ni	e	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
limite	()	pression)	• •	•	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

linéairen	nent	répartie	(cc	nt	ra	ir	nt	e)	•	•	•	•	•	•	•	•	•	•
longueur	des	fondation	ıs		••	• •			•	•		•	•	•	•	•	•	•

longueur (grande).....

masse	volumique	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
milieu	semi-infini		•	•	•		•		•	•		•	•	•	•	•	•	•	•	•		•	•	•	•	•	•

- module d'YOUNG.....
- module fonction de la profondeur.....

moment.....

```
monocouche (sol).....
```

```
(Section 2-1)
Vol. I
            (Sections 4-1 et 4-4)
Vol. II
Vol. III
            (Chap. 8)
Vol. I
            (Section 1-2)
            (Introduction § 5)
Vol. I
Vol. II
            (Chap. 6)
Vol. II
            (Chap. 6)
Vol. I
            (Introduction § 2 et 5)
            (Introduction § 3)
Vol. I
Vol. I
            (Section 1-3)
Vol. I
            (Section 1-3)
Vol. I
            (Introduction § 1)
            (Introduction § 1.a)
Vol. III
Vol. I
            (Section 2-4)
Vol. I
            (Introduction § 4)
            (Introduction § 1.c)
Vol. III
            (Sections 4-1, 4-2 et 6-4)
Vol. II
            (Introduction § 1)
Vol. I
Vol. II
            (Deuxième page du Chap. 6)
           (Introduction § 1.a)
Vol. III
Vol. II
            (Chap. 6)
Vol. I
             (Section 1-5)
Vol. I
             (Sections 2-1, 2-4, 3-1, 3-6, 3-7,
              3-9 et 3-10)
             (Sections 4-1, 4-2, 4-5, 4-6, 5-1,
Vol. II
              6-1, 6-4, 6-8, 6-10 et 6-12)
             (Sections 7-1, 7-9, 8-1 et 8-4)
Vol. III
Vol. I
             (Introduction § 3; Sections 1-3
              et 1-5)
Vol. I
             (Section 3-5)
             (Section 6-7)
Vol. II
Vol. III
             (Section 7-6)
```

(Section 3-7)

(Chapitre 8)

(Section 7-4)

(Sections 4-1, 6-4, 6-8 et 6-9)

(Sections 2-2, 3-2 et 3-8)

(Sections 4-3 et 4-4)

Vol. I

Vol. II Vol. III

Vol. I

Vol. II

Vol. III

Index

mur de soutènement (fondation de)	Vol. II	(Sections 4-1, 6-4 et 6-8)
	Vol. III	(Chapitre 8)
	17-3 TTT	
nappe phreatique	VOL. III	(Section (-())
NAVIER-LAME (equations de)	Vol. 1	(Section 1-3)
normale (charge)	VOL. I	(Chapitres 2, 3, 4, 5, 6 et 7 :
		toutes les sections).
notations	Vol, I	(Introduction § 9)
oblique (base)	Vol. III	(Sections 7-9 et 8-4)
orthotrope	Vol. III	(Section 7-3)
parabolique (charge)	Vol. I	(Section 3-9)
1	Vol. II	(Section 6-10)
paramètres mécaniques du sol	Vol. I	(Section 1-5)
pente	Vol. III	(Sections 7-8 et $8-3$)
plasticité	Vol. T	(Introduction $\&4$, Section 1-4)
poids volumique du sol	Vol. I	(Introduction § 3, Section 1-5 $)$
POISSON (coefficient de)	Vol. I	(Introduction § 3, Sections 1-3)
	four 1	et 1-5)
ponctuellè (force, charge)	Vol. I	(Sections 2-1, 2-2 et 2-3)
poteau	Vol. I	(Sections 2-1, 2-2 et 2-3)
poussée d'Archimède	Vol. III	(Introduction § 3)
pression	Vol. I	(Section 1-1)
pression admissible	Vol. III	(Introduction § 1.d)
pression limite	Vol. I	(Introduction § 4)
	Vol. III	(Introduction § 1.c)
profondes (fondations)	Vol. I	(Introduction § 1)
profondeur (des fondations)	Vol. I	(Introduction § 1 et § 5)
	Vol. III	(Introduction § 1.a)
profondeur (module fonction de)	Vol. I	(Section 3-5)
	Vol. II	(Section 6-7)
	Vol. III	(Section 7-6)
propriétés du sol	Vol. I	(Introduction § 3 ; Section 1-5)
pyramidal (remblai)	Vol. II	(Section 4-6)
quelconque (charge de forme)	Vol. II	(Chapitre 5)
radier	Vol. I	(Introduction § 1)
rectangulaire (fondation)	Vol. II	(Chapitre 4)
-	Vol. III	(Introduction § 1.a)

remblai
réservoir résultante des charges appliquées rigide (fondation, radier)
rigide (substratum)
rotation
sable saturé (force portante d'un sol) sec (force portante d'un sol)
sécurité (coefficient de)semelle filante
semelle isolée
semi-infini (milieu)

signes	(conventi	on d	le)	• •	•				•				•	•	•	• •	•	•	•	•
silo (f	ondation	de).	•••			••		••	•		•		•	•	•	• •	•	•	•	•
silt		· · · ·	•••		•			••	•		į	•	ě.	•	•	• •	ě		•	•
souple	(radier)			• •	÷	•••		•••	•		•	•	•	•	•			•	•	•
sphériq	ues (coor	donr	iée	s)	•		٠	••		• •	•	•	•	•	•			•	•	•
stratif	ié (sol).				•	• •	•	• •	•	• •	130	•	•	•	•	• •		•	•	•
substra	tum indé:	forma	abl	e.	•		•			• •	•	•	•	•	•			•	•	•

superfic	iell	Le	(f	0	nō	la	ti	lo	n)	•	•		•	•		•	•	•	•	•	•	•	•	•	•		•	•	
surcharge	e	• • •		•	• •	•		• •	•	•	٠	•	•	•	•		•	•	•	÷	•	•	•	•	•	•	•	•	•	
systèmes	de	co	or	d	on	n	ée	s	•	•	11	•	•	•	•	·	•	•	•	•	•	•	•	•		•		•	•	

tassement.			• •	•	•	•	•	•	•	• •	•	•		•	•	•	•	•	٠	•	
tassement	final	(total)	1	•	•	• •	•	1	•		•	•	•	•	•	•		•	•	•	

Vol. I	(Section 3-9)
Vol. II	(Sections 4-6, 6-10 et 6-11)
Vol. I	(Sections 3-1, 3-2, 3-3, 3-4 et 3-5)
Vol. II	(Sections 4-1 et 6-4)
Vol. I	(Sections 3-6, 3-7 et 3-8)
Vol. II	(Sections 4-5, 6-8 et 6-9)
Vol. I	(Sections 2-2, 3-2 et 3-8)
Vol. II	(Sections 4-3, 5-2, 6-2, 6-5, 6-9,
	6-11 et 6-13)
Vol. II	(Sections 4-1, 6-4, 6-8 et 6-9)
Vol. II	(Sections 4-1 et·6-4)
Vol. I	(Section 1-5)
Vol. III	(Introduction § 3)
Vol. III	(Introduction § 3)
Vol. III	(Introduction § 1.d)
Vol. II	(Chapitre 6)
Vol. III	(Chapitres 7 et 8)
Vol. I	(Chapitres 2 et 3)
Vol. II	(Chapitre 4)
Vol. I	(Sections 2-1, 2-4, 3-1, 3-6, 3-7,
	3-9 et 3-10)
Vol. II	(Sections 4-1, 4-2, 4-5, 4-6, 5-1,
	6-1, 6-4, 6-8, 6-10 et 6-12)
Vol. III	(Sections 7-1, 7-9, 8-1 et 8-4)
Vol. I	(Section 1-2)
Vol. I	(Chapitre 3)
Vol. I	(Section 1-5)
Vol. I	(Introduction § 6)
Vol. I	(Section 1-2)
Vol. III	(Section 7-2)
Vol. I	(Sections 2-2, 3-2 et 3-8)
Vol. II	(Sections 4-3, 4-4, 6-2, 6-5, 6-9,
	6-11 et 6-13)
Vol. III	(Section 7-4)
Vol. I	(Introduction § 1)
Vol. III	(Introduction § 2.b)
Vol. I	(Section 1-2)
Vol. I	(Introduction § 5)
Vol. I	(Introduction § 2 et 5)

Index

tassement instantané	Vol. I	(Introduction § 2 et 5)
tassement moyen	Vol. I	(Sections 3-1 et 3-2)
	Vol. II	I (Sections 4-1 et 6-5)
taux de travail	Vol. II	II (Introduction § 1.d)
tenseur contrainte	Vol. I	(Section 1-2)
tenseur déformation	Vol. I	(Section 1-2)
terme (court terme et long terme)	Vol. II	II (Introduction § 3)
terril	Vol. I	(Section 3-9)
trapézoidal (remblai)	Vol. II	I (Sections 6-10 et 6-11)
triangulaire (remblai)	Vol. II	I (Sections 6-10 et 6-11)
tricouche (sol)	Vol. I	(Section 3-4)
trois couches	Vol. I	(Section 3-4)
trois dimensions	Vol. I	(Introduction § 5)
	Vol. II	II (Introduction § 1.a)
tronconique (remblai)	Vol. I	(Section 3-9)
uniforme (pression, charge normale)	Vol. I	(Sections 3-1, 3-2, 3-3, 3-4 et 3-5)
	Vol. II	I (Sections 4-1, 4-2, 4-3, 6-4, 6-5,
5. a.		6-6 et 6-7)
unités	Vol. I	(Introduction § 8, Section 1-1)
YOUNG (module d')	Vol. I	(Introduction § 3, Section 1-5)

Imprimé en France Imprimerie JOUVE, 17, rue du Louvre, 75001 PARIS Dépôt légal : Nº 7709. — 1^{er} trimestre 1973